404
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Toxicity, preparation methods and applications of silver nanoparticles: an update

, &
Pages 650-661 | Received 29 Nov 2021, Accepted 05 Apr 2022, Published online: 19 Apr 2022

References

  • Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang G-M, Choi HY, Cho SG. 2017. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 18(1):120.
  • Abou El-Nour KM, Eftaiha A, Al-Warthan A, Ammar R. 2010. Synthesis and applications of silver nanoparticles. Arab J Chem. 3(3):135–140.
  • Ames BN, Gurney E, Miller JA, Bartsch H. 1972. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci USA. 69(11):3128–3132.
  • Asharani P, Hande MP, Valiyaveettil S. 2009. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 10(1):1–14.
  • AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3(2):279–290.
  • AshaRani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande M. 2012. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr. 3(1):2–14.
  • Aslantürk ÖA. 2018. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. Vol. 2. In: Genotoxicity – a predictable risk to our actual world; p. 64–80.
  • Avramescu SM, Fierascu I, Akhtar K, Khan SB, Ali F, Asiri A. 2020. Engineered nanomaterials: health and safety. BoD–Books on Demand.
  • Bhol KC, Schechter P, sciences. 2007. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig Dis Sci. 52(10):2732–2742.
  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 88(2):412–419.
  • Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit J. 2017. Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Front Chem. 5:6.
  • Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Stetina R. 2008. The comet assay: topical issues. Mutagenesis. 23(3):143–151.
  • Costa CS, Ronconi JVV, Daufenbach JF, Gonçalves CL, Rezin GT, Streck EL, da Silva Paula MMJM, biochemistry c. 2010. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem. 342(1-2):51–56.
  • Darmanin T, Nativo P, Gilliland D, Ceccone G, Pascual C, De Berardis B, Guittard F, Rossi FJC, Physicochemical SA, Aspects E. 2012. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids Surf A. 395:145–151.
  • Elnoury MAH, Azmy OM, Elshal AOI, Mohamed A, Ragab H, Elsherbini AAM. 2013. Study of the effects of silver nanoparticles exposure on the ovary of rats. Life Sci J. 10(2):1887–1894.
  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JJN. 2009. Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology. 20(50):505701.
  • Fenech M, Morley A, Mutagenesis M. 1986. Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low dose X-irradiation. Mutat Res. 161(2):193–198.
  • Fenech M, Mutagenesis M. 2000. The in vitro micronucleus technique. Mutat Res. 455(1–2):81–95.
  • Ferdous Z, Nemmar A. 2020. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. IJMS. 21(7):2375.
  • Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C. 2012. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci. 130(1):145–157.
  • Galloway SM, Armstrong MJ, Reuben C, Colman S, Brown B, Cannon C, Bloom AD, Nakamura F, Ahmed M, Duk S, et al. 1987. Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. Environ Mol Mutagen. 10(S10):1–35.
  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. 2014. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int. 2014:498420.
  • Ghaderi RS, Adibian F, Sabouri Z, Davoodi J, Kazemi M, Amel Jamehdar S, Meshkat Z, Soleimanpour S, Daroudi MJMT. 2021. Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity. Mater Technol. 1–9.DOI:10.1080/10667857.2021.1935602
  • Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SSJN. 2008. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology. 19(7):075104.
  • Gu X, Nie C, Lai Y, Lin CJMC. 2006. Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Physics. 96(2–3):217–222.
  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Park JH, Cho S-G, Lee KJ, Kim J-H, Chemistry E. 2013. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem. 19(5):1600–1605.
  • Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim J-H. 2013. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013:1–10.
  • Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SHJB. 2009. Antiangiogenic properties of silver nanoparticles. Biomaterials. 30(31):6341–6350.
  • Haase A, Rott S, Mantion A, Graf P, Plendl J, Thünemann AF, Meier WP, Taubert A, Luch A, Reiser G. 2012. Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci. 126(2):457–468.
  • Han JW, Jeong J-K, Gurunathan S, Choi Y-J, Das J, Kwon D-N, Cho S-G, Park C, Seo HG, Park J-K, et al. 2016. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse. Nanotoxicology. 10(3):361–373.
  • Huma Z-e, Gupta A, Javed I, Das R, Hussain SZ, Mumtaz S, Hussain I, Rotello V. 2018. Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria. ACS Omega. 3(12):16721–16727.
  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 9(6):385–406.
  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar K. 2009. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 6(5):1388–1401.
  • Journal EFSAJE. 2008. Inability to assess the safety of a silver hydrosol added for nutritional purposes as a source of silver in food supplements and the bioavailability of silver from this source based on the supporting dossier‐Scientific Statement of the Panel on Food Additives and Nutrient Sources added to Food (ANS). EFSA J. 6(12):884.
  • Juarez-Moreno K, Gonzalez E, Girón-Vazquez N, Chávez-Santoscoy R, Mota-Morales J, Perez-Mozqueda L, Garcia-Garcia M, Pestryakov A, Bogdanchikova NJH, toxicology e. 2017. Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Hum Exp Toxicol. 36(9):931–948.
  • Kalishwaralal K, Banumathi E, Pandian SRK, Deepak V, Muniyandi J, Eom SH, Gurunathan SJC, Biointerfaces SB. 2009. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces. 73(1):51–57.
  • Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, Linhardt RJ, Mousa S. 2009. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 20(45):455104.
  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG., biotechnology. 2008. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol. 18(8):1482–1484.
  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DGJB. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 22(2):235–242.
  • Kuempel ED, Roberts JR, Roth G, Zumwalde RD, Nathan D, Hubbs AF, Trout D, Holdsworth G. 2021. Health effects of occupational exposure to silver nanomaterials.
  • Kumar B, Smita K, Seqqat R, Benalcazar K, Grijalva M, Cumbal L. 2016. In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. J Photochem Photobiol B. 159:8–13.
  • Lacave JM, Retuerto A, Vicario-Parés U, Gilliland D, Oron M, Cajaraville MP, Orbea AJN. 2016. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos. Nanotechnology. 27(32):325102.
  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. 2010. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 8(1):1–10.
  • Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, Park HM, Song NW, Shin BS, Marshak DJP. 2013. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol. 10(1):1–14.
  • Lee KJ, Browning LM, Nallathamby PD, Osgood CJ, Xu X-H. 2013. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish. Nanoscale. 5(23):11625–11636.
  • Li K, Jia X, Tang A, Zhu X, Meng H, Wang YJIF. 2012. Preparation of spherical and triangular silver nanoparticles by a convenient method. Integr Ferroelectr. 136(1):9–14.
  • Liang H, Wang W, Huang Y, Zhang S, Wei H, Xu H. 2010. Controlled synthesis of uniform silver nanospheres. J Phys Chem C. 114(16):7427–7431.
  • Liao C, Li Y, Tjong S. 2019. Bactericidal and cytotoxic properties of silver nanoparticles. IJMS. 20(2):449.
  • Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, Wang C, Gu NJN. 2013. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale. 5(23):11829–11836.
  • Maekawa M, Toyama Y, Yasuda M, Yagi T, Yuasa S. 2002. Fyn tyrosine kinase in Sertoli cells is involved in mouse spermatogenesis. Biol Reprod. 66(1):211–221.
  • McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D. 2017. Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ. 575:231–246.
  • McShan D, Ray PC, Yu H, analysis d. 2014. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 22(1):116–127.
  • Melo PS, Marcato PD, de Araújo DR, Durán N. 2014. In vitro cytotoxicity assays of nanoparticles on different cell lines. nanotoxicology. Springer; p. 111–123.
  • Métraux GS, Mirkin C. 2005. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater. 17(4):412–415.
  • Mishra M, Panda M. 2021. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res. 55(6):671–687.
  • Mohamed H. 2016. Studies on the genotoxicity behavior of silver nanoparticles in the presence of heavy metal cadmium chloride in mice. J Nanomater. 2016:1–12.
  • Natsuki J, Natsuki T, Hashimoto Y. 2015. A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl. 4(5):325–332.
  • Oliveira RJ, Matuo R, da Silva AF, Matiazi HJ, Mantovani MS, Ribeiro LR. 2007. Protective effect of beta-glucan extracted from Saccharomyces cerevisiae, against DNA damage and cytotoxicity in wild-type (k1) and repair-deficient (xrs5) CHO cells. Toxicol In Vitro. 21(1):41–52.
  • Orendorff CJ, Gearheart L, Jana NR, Murphy C. 2006. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys. 8(1):165–170.
  • Patlolla AK, Tchounwou PB. 2020. Genotoxicity of silver nanoparticles (Ag-NPs) in in vitro and in vivo models. Nanotechnology in skin, soft tissue, and bone infections. Springer; p. 269–281.
  • Pilaquinga F, Amaguaña D, Morey J, Moncada-Basualto M, Pozo-Martínez J, Olea-Azar C, Fernández L, Espinoza-Montero P, Jara-Negrete E, Meneses L, et al. 2020. Synthesis of silver nanoparticles using aqueous leaf extract of Mimosa albida (Mimosoideae): characterization and antioxidant activity. Materials. 13(3):503.
  • Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA. 2011. Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition. Environ Health Perspect. 119(1):37–44.
  • Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S. 2011. Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol. 33(6):708–714.
  • Rodriguez-Garraus A, Azqueta A, Vettorazzi A, Lopez de Cerain AJN. 2020. Genotoxicity of silver nanoparticles. Nanomaterials. 10(2):251.
  • Roszak J, Domeradzka-Gajda K, Smok-Pieniążek A, Kozajda A, Spryszyńska S, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Cieślak M, Puchowicz D, et al. 2017. Genotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with aluminium chloride, butylparaben or di-n-butylphthalate. Toxicol In Vitro. 45(Pt 1):181–193.
  • Rycenga M, McLellan JM, Xia YJAM. 2008. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv Mater. 20(12):2416–2420.
  • Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi MJMT. 2020. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater Technol. 1–14.
  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. 2014. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci. 204:15–34.
  • Siekkinen AR, McLellan JM, Chen J, Xia Y. 2006. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett. 432(4-6):491–496.
  • Silvestry-Rodriguez N, Sicairos-Ruelas EE, Gerba CP, Bright K. 2007. Silver as a disinfectant toxicology. Rev Environ Contam Toxicol. 191:23–45.
  • Skalska J, Dąbrowska-Bouta B, Strużyńska LJF, Toxicology C. 2016. Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver. Food Chem Toxicol. 97:307–315.
  • Skalska J, Frontczak-Baniewicz M, Strużyńska LJN. 2015. Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology. 46:145–154.
  • Sleiman HK, Romano RM, Oliveira C, Romano M, Environmental Health PA. 2013. Effects of prepubertal exposure to silver nanoparticles on reproductive parameters in adult male Wistar rats. J Toxicol Environ Health A. 76(17):1023–1032.
  • Sondi I, Salopek-Sondi B, science i. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 275(1):177–182.
  • Strużyńska L, Skalska JJC, Nanoparticles M. 2018. Mechanisms underlying neurotoxicity of silver nanoparticles. p. 227–250.
  • Tang J, Xiong L, Zhou G, Wang S, Wang J, Liu L, Li J, Yuan F, Lu S, Wan Z, et al. 2010. Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro. J Nanosci Nanotechnol. 10(10):6313–6317.
  • Tao A, Sinsermsuksakul P, Yang P. 2006. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed Engl. 45(28):4597–4601.
  • Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam P. 2007. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2(1):129–136.
  • Torabian F, Akhavan Rezayat A, Ghasemi Nour M, Ghorbanzadeh A, Najafi S, Sahebkar A, Sabouri Z, Darroudi M. 2021. Administration of silver nanoparticles in diabetes mellitus: a systematic review and meta-analysis on animal studies. p. 1–11.
  • van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman P. 2012. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 6(8):7427–7442.
  • Vroman L, Adams A, Fischer G, Munoz P. 1980. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces.
  • Wang X, Li T, Su X, Li J, Li W, Gan J, Wu T, Kong L, Zhang T, Tang M, et al. 2019. Genotoxic effects of silver nanoparticles with/without coating in human liver HepG2 cells and in mice. J Appl Toxicol. 39(6):908–918.
  • Wen H, Dan M, Yang Y, Lyu J, Shao A, Cheng X, Chen L, Xu L. 2017. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLOS One. 12(9):e0185554.
  • World Health Organization. 2021. Silver in drinking water: Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization.
  • Wiley BJ, Im SH, Li Z-Y, McLellan J, Siekkinen A, Xia Y. 2006. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. ACS Publications.
  • Wilson G-R. 2002. The biocidal products directive (98/8/EC). 270:9–16.
  • Wu P, Gao Y, Lu Y, Zhang H, Cai CJA. 2013. High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Analyst. 138(21):6501–6510.
  • Xu F, Piett C, Farkas S, Qazzaz M, Syed N. 2013. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain. 6(1):1–15.
  • Xu J, Cheng G-a, Zheng R-t. 2010. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method. Appl Surf Sci. 256(16):5006–5010.
  • Xu L, Dan M, Shao A, Cheng X, Zhang C, Yokel RA, Takemura T, Hanagata N, Niwa M, Watanabe D. 2015. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int J Nanomedicine. 10:6105–6118.
  • Xu L, Shao A, Zhao Y, Wang Z, Zhang C, Sun Y, Deng J, Chou L, nanotechnology. 2015. Neurotoxicity of silver nanoparticles in rat brain after intragastric exposure. J Nanosci Nanotechnol. 15(6):4215–4223.
  • Yin N, Zhang Y, Yun Z, Liu Q, Qu G, Zhou Q, Hu L, Jiang G. 2015. Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. Toxicol Lett. 237(2):112–120.
  • Yusuf M. 2019. Silver nanoparticles: synthesis and applications. p. 2343.
  • Zaheer ZJC, Rafiuddin . 2011. Multi-branched flower-like silver nanoparticles: preparation and characterization. Coll Surf Physiochem Eng Aspect. 384(1–3):427–431.
  • Ziemińska E, Stafiej A, Strużyńska LJT. 2014. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology. 315:38–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.