348
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sulfur mustard analog 2-chloroethyl ethyl sulfide increases triglycerides by activating DGAT1-dependent biogenesis and inhibiting PGC1ɑ-dependent fat catabolism in immortalized human bronchial epithelial cells

ORCID Icon, , , , , , , , , & show all
Pages 271-278 | Received 23 May 2022, Accepted 09 Sep 2022, Published online: 28 Sep 2022

References

  • Anthonsen MW, Rönnstrand L, Wernstedt C, Degerman E, Holm C. 1998. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem. 273(1):215–221.
  • Brimfield AA, Mancebo AM, Mason RP, Jiang JJ, Siraki AG, Novak MJ. 2009. Free radical production from the interaction of 2-chloroethyl vesicants (mustard gas) with pyridine nucleotide-driven flavoprotein electron transport systems. Toxicol Appl Pharmacol. 234(1):128–134.
  • Conroy R, Mackie SA, CM B. 2018. Disorders of lipid metabolism. In: Radovick SMM, editor. Pediatric endocrinology. Cham: Springer; p. 755–780.
  • Frier BC, Williams DB, Wright DC. 2009. The effects of apelin treatment on skeletal muscle mitochondrial content. Am J Physiol Regul Integr Comp Physiol. 297(6):R1761–R1768.
  • Gilardoni M, Léonço D, Caffin F, Gros-Désormeaux F, Eldin C, Béal D, Ouzia S, Junot C, Fenaille F, Piérard C, et al. 2021. Evidence for the systemic diffusion of (2-chloroethyl)-ethyl-sulfide, a sulfur mustard analog, and its deleterious effects in brain. Toxicology. 462:152950.
  • Goswami DG, Kumar D, Tewari-Singh N, Orlicky DJ, Jain AK, Kant R, Rancourt RC, Dhar D, Inturi S, Agarwal C, et al. 2015. Topical nitrogen mustard exposure causes systemic toxic effects in mice. Exp Toxicol Pathol. 67(2):161–170.
  • Gould NS, White CW, Day BJ. 2009. A role for mitochondrial oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sulfide-induced lung cell injury and antioxidant protection. J Pharmacol Exp Ther. 328(3):732–739.
  • Grabner GF, Xie H, Schweiger M, Zechner R. 2021. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab. 3(11):1445–1465.
  • Granneman JG, Moore HPH, Krishnamoorthy R, Rathod M. 2009. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem. 284(50):34538–34544.
  • Greenspan P, Mayer EP, Fowler SD. 1985. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 100(3):965–973.
  • Haemmerle G, Moustafa T, Woelkart G, Büttner S, Schmidt A, van de Weijer T, Hesselink M, Jaeger D, Kienesberger PC, Zierler K, et al. 2011. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med. 17(9):1076–851085.
  • Ishii K-a, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, et al. 2009. Coordination of PGC-1 beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 15(3):259–266.
  • Jowsey PA, Williams FM, Blain PG. 2012. DNA damage responses in cells exposed to sulphur mustard. Toxicol Lett. 209(1):1–10.
  • Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R. 2006. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin–Dorfman syndrome. Cell Metab. 3(5):309–319.
  • Martens ME, Smith WJ. 2008. The role of NAD + depletion in the mechanism of sulfur mustard-induced metabolic injury. Cutan Ocul Toxicol. 27(1):41–53.
  • Martens ME. 2006. Role of energy metabolism in cutaneous sulfur mustard injury. https://www.researchgate.net/publication/235072668_The_Role_of_Energy_Metabolism_in_Cutaneous_Sulfur_Mustard_Injury.
  • Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, Nomura DK, Olzmann JA. 2017. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell. 42(1):9–21.e5.
  • Paromov V, Brannon M, Kumari S, Samala M, Qui M, Smith M, Stone WL. 2011. Sodium pyruvate modulates cell death pathways in HaCaT keratinocytes exposed to half-mustard gas. Int J Toxicol. 30(2):197–206.
  • Piccinin E, Peres C, Bellafante E, Ducheix S, Pinto C, Villani G, Moschetta A. 2018. Hepatic peroxisome proliferator-activated receptor γ coactivator 1β drives mitochondrial and anabolic signatures that contribute to hepatocellular carcinoma progression in mice. Hepatology. 67(3):884–898.
  • Rancourt RC, Veress LA, Guo X, Jones TN, Hendry-Hofer TB, White CW. 2012. Airway tissue factor-dependent coagulation activity in response to sulfur mustard analog 2-chloroethyl ethyl sulfide. Am J Physiol Lung Cell Mol Physiol. 302(1):L82–92.
  • Roe ND, Handzlik MK, Li T, Tian R. 2018. The role of diacylglycerol acyltransferase (DGAT) 1 and 2 in cardiac metabolism and function. Sci Rep. 8(1):8.
  • Sawyer TW, McNeely K, Louis K, Lecavalier P, Song Y, Villanueva M, Clewley R. 2017. Comparative toxicity of mono- and bifunctional alkylating homologues of sulphur mustard in human skin keratinocytes. Toxicology. 382:36–46.
  • Sayer NM, Whiting R, Green AC, Anderson K, Jenner J, Lindsay CD. 2010. Direct binding of sulfur mustard and chloroethyl ethyl sulphide to human cell membrane-associated proteins: implications for sulfur mustard pathology. J Chromatogr B Analyt Technol Biomed Life Sci. 878(17–18):1426–1432.
  • Schweiger M, Schoiswohl G, Lass A, Radner FPW, Haemmerle G, Malli R, Graier W, Cornaciu I, Oberer M, Salvayre R, et al. 2008. The C-terminal region of human adipose triglyceride lipase affects enzyme activity and lipid droplet binding. J Biol Chem. 283(25):17211–17220.
  • Shakarjian MP, Heck DE, Gray JP, Sinko PJ, Gordon MK, Casillas RP, Heindel ND, Gerecke DR, Laskin DL, Laskin JD. 2010. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol Sci. 114(1):5–19.
  • Tewari-Singh N, Gu M, Agarwal C, White CW, Agarwal R. 2010. Biological and molecular mechanisms of sulfur mustard analogue-induced toxicity in JB6 and HaCaT cells: possible role of ataxia telangiectasia-mutated/ataxia telangiectasia-Rad3-related cell cycle checkpoint pathway. Chem Res Toxicol. 23(6):1034–1044.
  • Venosa A, Smith LC, Murray A, Banota T, Gow AJ, Laskin JD, Laskin DL. 2019. Regulation of macrophage foam cell formation during nitrogen mustard (NM)-induced pulmonary fibrosis by lung lipids. Toxicol Sci. 172(2):344–358.
  • Ventura-Clapier R, Garnier A, Veksler V. 2008. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1 alpha. Cardiovasc Res. 79(2):208–217.
  • Veress LA, O'Neill HC, Hendry-Hofer TB, Loader JE, Rancourt RC, White CW. 2010. Airway obstruction due to bronchial vascular injury after sulfur mustard analog inhalation. Am J Respir Crit Care Med. 182(11):1352–1361.
  • Yang X, Lu X, Lombès M, Rha GB, Chi YI, Guerin TM, Smart EJ, Liu J. 2010. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11(3):194–205.
  • Ye F, Dan G, Zhao Y, Yu W, Cheng J, Chen M, Sai Y, Zou Z. 2021. Small-interfering RNA for c-Jun attenuates cell death by preventing JNK-dependent PARP1 cleavage and DNA fragmentation in nitrogen mustard-injured immortalized human bronchial epithelial cells. Toxicol Res. 10(5):1034–1044.
  • Ye F, Sai Y, Zou Z. 2022. Chemical safety concerns of sulfur mustard analog, 2-chloroethyl ethyl sulfide, in laboratory study. Ann Mil Health Sci Res. 19(4):e121268.
  • Yen CLE, Stone SJ, Koliwad S, Harris C, Farese RV. 2008. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 49(11):2283–2301.
  • Zhang H, Chen YC, Pei ZP, Gao HH, Shi WW, Sun MX, Xu QQ, Zhao J, Meng WQ, Xiao K. 2019. Protective effects of polydatin against sulfur mustard-induced hepatic injury. Toxicol Appl Pharmacol. 367:1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.