350
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An alternative in vitro model considering cell-cell interactions in fiber-induced pulmonary fibrosis

ORCID Icon, , , , , , ORCID Icon & show all
Pages 411-426 | Received 16 Oct 2022, Accepted 28 Nov 2022, Published online: 15 Dec 2022

References

  • Arish N, Petukhov D, Wallach-Dayan SB. 2019. The role of telomerase and telomeres in interstitial lung diseases: from molecules to clinical implications. Int J Mol Sci. 20(12):2996.
  • Barbas-Filho JV, Ferreira MA, Sesso A, Kairalla RA, Carvalho CR, Capelozzi VL. 2001. Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP). J Clin Pathol. 54(2):132–138.
  • Barosova H, Karakocak BB, Septiadi D, Petri-Fink A, Stone V, Rothen-Rutishauser B. 2020. An in vitro lung system to assess the proinflammatory hazard of carbon nanotube aerosols. Int J Mol Sci. 21(15):5335.
  • Barosova H, Maione AG, Septiadi D, Sharma M, Haeni L, Balog S, O'Connell O, Jackson GR, Brown D, Clippinger AJ, et al. 2020. Use of EpiAlveolar lung model to predict fibrotic potential of multiwalled carbon nanotubes. ACS Nano. 14(4):3941–3956.
  • Bernstein DM, Riego Sintes JM, Ersboell BK, Kunert J. 2001. Biopersistence of synthetic mineral fibers as a predictor of chronic inhalation toxicity in rats. Inhal Toxicol. 13(10):823–849.
  • Bianchi MG, Campagnolo L, Allegri M, Ortelli S, Blosi M, Chiu M, Taurino G, Lacconi V, Pietroiusti A, Costa AL, et al. 2020. Length-dependent toxicity of TiO(2) nanofibers: mitigation via shortening. Nanotoxicology. 14(4):433–452.
  • Bowden DH. 1984. The alveolar macrophage. Environ Health Perspect. 55:327–341.
  • Brechard S, Bueb JL, Tschirhart EJ. 2005. Interleukin-8 primes oxidative burst in neutrophil-like HL-60 through changes in cytosolic calcium. Cell Calcium. 37(6):531–540.
  • Carre PC, Mortenson RL, King TE, Jr., Noble PW, Sable CL, Riches DW. 1991. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest. 88(6):1802–1810.
  • Chan FK, Moriwaki K, De Rosa MJ. 2013. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol. 979:65–70.
  • Chary A, Groff K, Stucki AO, Contal S, Stoffels C, Cambier S, Sharma M, Gutleb AC, Clippinger AJ. 2022. Maximizing the relevance and reproducibility of A549 cell culture using FBS-free media. Toxicol In Vitro. 83:105423.
  • Chavez-Galan L, Becerril C, Ruiz A, Ramon-Luing LA, Cisneros J, Montano M, Salgado A, Ramos C, Buendia-Roldan I, Pardo A, et al. 2022. Fibroblasts from idiopathic pulmonary fibrosis induce apoptosis and reduce the migration capacity of t lymphocytes. Front Immunol. 13:820347.
  • Chen T, Nie H, Gao X, Yang J, Pu J, Chen Z, Cui X, Wang Y, Wang H, Jia G. 2014. Epithelial-mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett. 226(2):150–162.
  • Chortarea S, Zerimariam F, Barosova H, Septiadi D, Clift MJ, Petri-Fink A, Rothen-Rutishauser B. 2019. Profibrotic Activity of Multiwalled Carbon Nanotubes Upon Prolonged Exposures in Different Human Lung Cell Types. Appl Vitro Toxicol. 5(1):47–61.
  • Clark AG, Paluch E. 2011. Mechanics and regulation of cell shape during the cell cycle. Results Probl Cell Differ. 53:31–73.
  • Clippinger AJ, Ahluwalia A, Allen D, Bonner JC, Casey W, Castranova V, David RM, Halappanavar S, Hotchkiss JA, Jarabek AM, et al. 2016. Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials. Arch Toxicol. 90(7):1769–1783.
  • Di Bucchianico S, Cappellini F, Le Bihanic F, Zhang Y, Dreij K, Karlsson HL. 2017. Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis. 32(1):127–137.
  • Di Ianni E, Erdem JS, Moller P, Sahlgren NM, Poulsen SS, Knudsen KB, Zienolddiny S, Saber AT, Wallin H, Vogel U, et al. 2021. In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Part Fibre Toxicol. 18(1):25.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 7(1):5.
  • Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. 2013. Pulmonary toxicity of carbon nanotubes and asbestos - similarities and differences. Adv Drug Deliv Rev. 65(15):2078–2086.
  • Donaldson K, Seaton A. 2012. A short history of the toxicology of inhaled particles. Part Fibre Toxicol. 9(1):13.
  • Dorger M, Krombach F. 2002. Response of alveolar macrophages to inhaled particulates. Eur Surg Res. 34(1-2):47–52.
  • D'Urso M, Kurniawan NA. 2020. Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: from Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol. 8:609653.
  • Ekstrand-Hammarstrom B, Akfur CM, Andersson PO, Lejon C, Osterlund L, Bucht A. 2012. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B. Nanotoxicology. 6(6):623–634.
  • El Yamani N, Rundén-Pran E, Collins AR, Longhin EM, Elje E, Hoet P, Vinković Vrček I, Doak SH, Fessard V, Dusinska M. 2022. The miniaturized enzyme-modified comet assay for genotoxicity testing of nanomaterials. Front Toxicol. 4:986318.
  • Elgrabli D, Abella-Gallart S, Aguerre-Chariol O, Robidel F, Rogerieux F, Boczkowski J, Lacroix G. 2007. Effect of BSA on carbon nanotube dispersion for in vivo and in vitro studies. Nanotoxicology. 1(4):266–278.
  • EPA US. 2015. IRIS toxicological review of libby amphibole asbestos. Washington, DC: U.S. Environmental Protection Agency.
  • EPA US. 2020. Risk evaluation for asbestos, Part I: chrysotile Asbestos. Washington, DC: U.S. Environmental Protection Agency.
  • Foksinski M, Rozalski R, Guz J, Ruszkowska B, Sztukowska P, Piwowarski M, Klungland A, Olinski R. 2004. Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med. 37(9):1449–1454.
  • Friesen A, Fritsch-Decker S, Hufnagel M, Mulhopt S, Stapf D, Hartwig A, Weiss C. 2022. Comparing alpha-quartz-induced cytotoxicity and interleukin-8 release in pulmonary mono- and co-cultures exposed under submerged and air-liquid interface conditions. Int J Mol Sci. 23(12):6412.
  • Fritz JM, Dwyer-Nield LD, Malkinson AM. 2011. Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation. Mol Cancer. 10:76.
  • Gaensler EA, Jederlinic PJ, Churg A. 1991. Idiopathic pulmonary fibrosis in asbestos-exposed workers. Am Rev Respir Dis. 144(3 Pt 1):689–696.
  • Gangwal S, Brown JS, Wang A, Houck KA, Dix DJ, Kavlock RJ, Hubal EA. 2011. Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ Health Perspect. 119(11):1539–1546.
  • Halappanavar S, van den Brule S, Nymark P, Gaté L, Seidel C, Valentino S, Zhernovkov V, Høgh Danielsen P, De Vizcaya A, Wolff H, et al. 2020. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part Fibre Toxicol. 17(1):16.
  • He X, Young SH, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q. 2011. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-kappaB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol. 24(12):2237–2248.
  • Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN. 1998. DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci U S A. 95(1):288–293.
  • Herb M, Schramm M. 2021. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel). 10(2):313.
  • Hussain S, Sangtian S, Anderson SM, Snyder RJ, Marshburn JD, Rice AB, Bonner JC, Garantziotis S. 2014. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Part Fibre Toxicol. 11:28.
  • Juncadella IJ, Kadl A, Sharma AK, Shim YM, Hochreiter-Hufford A, Borish L, Ravichandran KS. 2013. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature. 493(7433):547–551.
  • Kane AB, Hurt RH, Gao H. 2018. The asbestos-carbon nanotube analogy: an update. Toxicol Appl Pharmacol. 361:68–80.
  • Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. 2015. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? Environ Mol Mutagen. 56(2):82–96.
  • Kaur G, Dufour JM. 2012. Cell lines: valuable tools or useless artifacts. Spermatogenesis. 2(1):1–5.
  • Kendall RT, Feghali-Bostwick CA. 2014. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 5:123.
  • Klein SG, Serchi T, Hoffmann L, Blomeke B, Gutleb AC. 2013. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol. 10(1):31.
  • Kuehn A, Kletting S, de Souza Carvalho-Wodarz C, Repnik U, Griffiths G, Fischer U, Meese E, Huwer H, Wirth D, May T, et al. 2016. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX. 33(3):251–260.
  • Kunkel SL, Standiford T, Kasahara K, Strieter RM. 1991. Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp Lung Res. 17(1):17–23.
  • Kwiatkowska S, Piasecka G, Zieba M, Piotrowski W, Nowak D. 1999. Increased serum concentrations of conjugated diens and malondialdehyde in patients with pulmonary tuberculosis. Respir Med. 93(4):272–276.
  • Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. 2019. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: signaling, Therapeutic Implications, and Challenges. Cells. 8(10):1118.
  • Meigs L, Smirnova L, Rovida C, Leist M, Hartung T. 2018. Animal testing and its alternatives – the most important omics is economics. ALTEX. 35(3):275–305.
  • Meindl C, Ohlinger K, Zrim V, Steinkogler T, Frohlich E. 2021. Screening for Effects of Inhaled Nanoparticles in Cell Culture Models for Prolonged Exposure. Nanomaterials (Basel. ). 11(3):606.
  • Meng XM, Nikolic-Paterson DJ, Lan HY. 2016. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 12(6):325–338.
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol. 8:21.
  • Moller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, et al. 2014. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol. 88(11):1939–1964.
  • Moller P, Wils RS, Di Ianni E, Gutierrez CAT, Roursgaard M, Jacobsen NR. 2021. Genotoxicity of multi-walled carbon nanotube reference materials in mammalian cells and animals. Mutat Res Rev Mutat Res. 788:108393.
  • Mowat V, Alexander DJ, Pilling AM. 2017. A comparison of rodent and nonrodent laryngeal and tracheal bifurcation sensitivities in inhalation toxicity studies and their relevance for human exposure. Toxicol Pathol. 45(1):216–222.
  • Mussar K, Tucker A, McLennan L, Gearhart A, Jimenez-Caliani AJ, Cirulli V, Crisa L. 2014. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors. PloS One. 9(2):e89492.
  • Oberdorster G. 2002. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol. 14(1):29–56.
  • Offer S, Hartner E, Di Bucchianico S, Bisig C, Bauer S, Pantzke J, Zimmermann EJ, Cao X, Binder S, Kuhn E, et al. 2022. Effect of atmospheric aging on soot particle toxicity in lung cell models at the air-liquid interface: differential toxicological impacts of biogenic and anthropogenic Secondary Organic Aerosols (SOAs). Environ Health Perspect. 130(2):27003.
  • Ohbayashi M, Kubota S, Kawase A, Kohyama N, Kobayashi Y, Yamamoto T. 2014. Involvement of epithelial-mesenchymal transition in methotrexate-induced pulmonary fibrosis. J Toxicol Sci. 39(2):319–330.
  • Osmond-McLeod MJ, Poland CA, Murphy F, Waddington L, Morris H, Hawkins SC, Clark S, Aitken R, McCall MJ, Donaldson K. 2011. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Part Fibre Toxicol. 8(1):15.
  • Padmore T, Stark C, Turkevich LA, Champion JA. 2017. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages. Biochim Biophys Acta Gen Subj. 1861(2):58–67.
  • Parimon T, Hohmann MS, Yao C. 2021. Cellular senescence: pathogenic mechanisms in lung fibrosis. Int J Mol Sci. 22(12):6214.
  • Pilette C, Ouadrhiri Y, Van Snick J, Renauld JC, Staquet P, Vaerman JP, Sibille Y. 2002. Oxidative burst in lipopolysaccharide-activated human alveolar macrophages is inhibited by interleukin-9. Eur Respir J. 20(5):1198–1205.
  • Pinto SM, Kim H, Subbannayya Y, Giambelluca MS, Bosl K, Ryan L, Sharma A, Kandasamy RK. 2021. Comparative proteomic analysis reveals varying impact on immune responses in phorbol 12-myristate-13-acetate-mediated THP-1 Monocyte-to-macrophage differentiation. Front Immunol. 12:679458.
  • Polimeni M, Gulino GR, Gazzano E, Kopecka J, Marucco A, Fenoglio I, Cesano F, Campagnolo L, Magrini A, Pietroiusti A, et al. 2016. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-beta-mediated Akt/GSK-3beta/SNAIL-1 signalling pathway. Part Fibre Toxicol. 13(1):27.
  • Ponti J, Broggi F, Mariani V, De Marzi L, Colognato R, Marmorato P, Gioria S, Gilliland D, Pascual Garcia C, Meschini S, et al. 2013. Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential. Nanotoxicology. 7(2):221–233.
  • Rahman L, Jacobsen NR, Aziz SA, Wu D, Williams A, Yauk CL, White P, Wallin H, Vogel U, Halappanavar S. 2017. Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: investigating the mechanisms of pulmonary carcinogenesis. Mutat Res Genet Toxicol Environ Mutagen. 823:28–44.
  • Robledo R, Mossman B. 1999. Cellular and molecular mechanisms of asbestos-induced fibrosis. J Cell Physiol. 180(2):158–166. English.
  • Sauer UG, Vogel S, Hess A, Kolle SN, Ma-Hock L, van Ravenzwaay B, Landsiedel R. 2013. In vivo-in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems. Toxicol In Vitro. 27(1):174–190.
  • Schins RP, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol. 19(Suppl 1):189–198.
  • Schinwald A, Chernova T, Donaldson K. 2012. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol. 9:47.
  • Schweitzer MD, Calzadilla AS, Salamo O, Sharifi A, Kumar N, Holt G, Campos M, Mirsaeidi M. 2018. Lung health in era of climate change and dust storms. Environ Res. 163:36–42.
  • Sos Poulsen S, Jacobsen NR, Labib S, Wu D, Husain M, Williams A, Bogelund JP, Andersen O, Kobler C, Molhave K, et al. 2013. Transcriptomic analysis reveals novel mechanistic insight into murine biological responses to multi-walled carbon nanotubes in lungs and cultured lung epithelial cells. PloS One. 8(11):e80452.
  • Srivastava RK, Pant AB, Kashyap MP, Kumar V, Lohani M, Jonas L, Rahman Q. 2011. Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549. Nanotoxicology. 5(2):195–207.
  • Stern ST, Adiseshaiah PP, Crist RM. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 9(1):20.
  • Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD. 1992. Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol. 6(2):235–243.
  • Szondy Z, Sarang Z, Kiss B, Garabuczi E, Koroskenyi K. 2017. Anti-inflammatory Mechanisms Triggered by Apoptotic Cells during Their Clearance. Front Immunol. 8:909.
  • Thiery JP, Acloque H, Huang RY, Nieto MA. 2009. Epithelial-mesenchymal transitions in development and disease. Cell. 139(5):871–890.
  • Thorley AJ, Ford PA, Giembycz MA, Goldstraw P, Young A, Tetley TD. 2007. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages. J Immunol. 178(1):463–473.
  • Tsoutsou PG, Gourgoulianis KI, Petinaki E, Germenis A, Tsoutsou AG, Mpaka M, Efremidou S, Molyvdas PA. 2006. Cytokine levels in the sera of patients with idiopathic pulmonary fibrosis. Respir Med. 100(5):938–945.
  • Turner MD, Nedjai B, Hurst T, Pennington DJ. 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 1843(11):2563–2582.
  • Uhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M. 1998. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol. 275(6):L1192–1199.
  • Uhal BD, Joshi I, True AL, Mundle S, Raza A, Pardo A, Selman M. 1995. Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am J Physiol. 269(6 Pt 1):L819–828.
  • Vandamme TF. 2015. Rodent models for human diseases. Eur J Pharmacol. 759:84–89.
  • Ventura C, Pereira JFS, Matos P, Marques B, Jordan P, Sousa-Uva A, Silva MJ. 2020. Cytotoxicity and genotoxicity of MWCNT-7 and crocidolite: assessment in alveolar epithelial cells versus their coculture with monocyte-derived macrophages. Nanotoxicology. 14(4):479–503.
  • Vietti G, Lison D, van den Brule S. 2016. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part Fibre Toxicol. 13:11.
  • Waghray M, Cui Z, Horowitz JC, Subramanian IM, Martinez FJ, Toews GB, Thannickal VJ. 2005. Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. Faseb J. 19(7):854–856.
  • Wang R, Ramos C, Joshi I, Zagariya A, Pardo A, Selman M, Uhal BD. 1999. Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. Am J Physiol. 277(6):L1158–1164.
  • Wang P, Wang Y, Nie X, Braini C, Bai R, Chen C. 2015. Multiwall carbon nanotubes directly promote fibroblast-myofibroblast and epithelial-mesenchymal transitions through the activation of the TGF-beta/Smad signaling pathway. Small. 11(4):446–455.
  • Wottrich R, Diabate S, Krug HF. 2004. Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int J Hyg Environ Health. 207(4):353–361.
  • Wu X, Lintelmann J, Klingbeil S, Li J, Wang H, Kuhn E, Ritter S, Zimmermann R. 2017. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: a pilot study. Biomarkers. 22(6):525–536.
  • Yanai H, Shteinberg A, Porat Z, Budovsky A, Braiman A, Ziesche R, Fraifeld VE. 2015. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging (Albany NY). ). 7(9):664–672.
  • Yao L, Conforti F, Hill C, Bell J, Drawater L, Li J, Liu D, Xiong H, Alzetani A, Chee SJ, et al. 2019. Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis. Cell Death Differ. 26(5):943–957.
  • Yu S, Choi HH, Kim IW, Kim TJ. 2019. Conditioned medium from asbestos-exposed fibroblasts affects proliferation and invasion of lung cancer cell lines. PloS One. 14(9):e0222160.
  • Ziegenhagen MW, Zabel P, Zissel G, Schlaak M, Muller-Quernheim J. 1998. Serum level of interleukin 8 is elevated in idiopathic pulmonary fibrosis and indicates disease activity. Am J Respir Crit Care Med. 157(3 Pt 1):762–768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.