125
Views
143
CrossRef citations to date
0
Altmetric
Research Article

Brain Regional Heterogeneity and Toxicological Mechanisms of Organophosphates and Carbamates

Pages 103-143 | Published online: 30 Sep 2008

REFERENCES

  • Acosta, D., Anuforo, D. C., and Smith, R. V. 1980. Cytotoxicity of acetaminophen and papaverine in primary cultures of rat hepatocytes. Toxicol. Appl. Pharmacol. 53:306–314.
  • Albano, C. B., Muralikrishnan, D., and Ebadi, M. 2002. Distribution of coen-zyme Q homologues in brain. Neurochem. Res. 27:359–368.
  • Aldous, C. N., Farr, C. H., and Sharma, R. P. 1982. Effects of leptophos on rat brain levels and turnover rates of biogenic amines and their metabolites. Ecotoxicol. Environ. Safety. 6:570–576.
  • Anden, N. E. 1974. Effects of oxotremorine and physostigmine on the turnover of dopamine in the corpus striatum and the limbic system. J. Pharmac. Pharmacol. 26:738–740.
  • Anderson, D. E., Yuan, X. J., Tseng, C. M., Rubin, J. L., Rosen, G. M., and Tod, M. L. 1993. Nitrone spin traps block calcium channels and induce pulmonary artery relaxation dependent of free radicals. Biochem. Biophys. Res. Commun. 193:878–885.
  • Andreoli, S. P. 1993. ATP depletion and cell injury: What is the relationship? J. Lab. Clin. Med. 122:232–233.
  • Appleyard, M. E., Tayer, S. C., and Little, H. J. 1990. Acetylcholinesterase activity in regions of mouse brain following acute and chronic treatment with a benzodiazepine inverse agonist. Br. J. Pharmacol. 101:599–604.
  • Atack, J. R., Perry, E. K., Bonham, J. R., Candy, J. M., and Perry, R. H. 1986. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J. Neurochem. 47:263–277.
  • Bagetta, G., Massoud, R., Rodino, P., Federici, G., and Nistico, G. 1993. Systetic administration of lithium chloride and tacrine increases nitric oxide synthase activity in the hippocampus of rats. Eur. J. Pharmacol. 237:61–64.
  • Balcioglu, A., and Maher, T. J. 1993. Determination of kainic acid-induced release of nitric oxide using a novel hemoglobin trapping technique with microdialysis. J. Neurochem. 61:2311–2313.
  • Barclay, L. R. C., and Vinquist, M. R. 2000. Do spin traps also act as classical chain-breaking antioxidants? A quantitative study of phenyl tert-butylnitrone (PBN) in solution and in liposomes. Free Radic. Biol. Med. 28:1079–1090.
  • Barton, A. J. L., Pearson, R. C. A., Najlerahim, A., and Harrison, P. J. 1993. Pre- and post-mortem influences on brain RNA. J. Neurochem. 61:1—11.
  • Bast, A., Haenen, G.R.M.M., and Doelman, C.J.A. 1991. Oxidants and antioxidants. Am. J. Med. 31: 2S-13S.
  • Benishin, C. G., and Carroll, P. T. 1983. Multiple forms of choline-O-acetyltransferase in mouse and rat brain: Solubilization and characterization. J. Neurochem. 41:1030–1039.
  • Bisso, G. M., Meneguz, A., and Michalek, H. 1982. Developmental factors affecting brain acetylcholinesterase inhibition and recovery in DFP-treated rats. Dev. Neurosci. 5:508–519.
  • Bisso, G. M., Briancesco, R., and Michalek, H. 1991. Size and charge isomers of acetylcholinesterase in the cerebral cortex of young and aged rats. Neurochem. Res. 16:517–575.
  • Bjorneboe, A., Nenseter, M. S., Hagen, B. F., Bjorneboe, G. E. A., Prydz, K., and Drevon, C. A. 1991. Effect of dietary deficiency and supplement with all-rac-a-tocopherol on hepatic content in rats. J. Nutr. 121:1208–1213.
  • Blusztajn, J. K., and Wurtman, R. J. 1983. Choline and cholinergic neurons. Science 221:614–620.
  • Bolanos, J. P., Heales, S. J. R., Land, J. M., and Clark, J. B. 1995. Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurons and astrocytes in primary culture. J. Neurochem. 64:1965–1972.
  • Bolanos, J. P., Almeida, A., Stewart, V., Peuchen, S., Land, J. M., Clark, J. B., and Heales, S. J. R. 1997. Nitric oxide mediated mitochondrial damage in the brain: Mechanism and implications for neurodegenerative diseases. J. Neurochem. 68:2227–2240.
  • Bonner, T. I. 1989. The molecular basis of muscarinic receptor diversity. Trends Neurol. Sci. 12:148–151.
  • Boyd, R. T. 1997. The molecular biology of neuronal nicotinic acetylcholine receptors. Crit. Rev. Toxicol. 27:299–318.
  • Boyer, P. D. 1998. Energy, life, and ATP. Bioscience Rep. 18:97–117.
  • Brann, M. R., Ellis, J., Jorgensen, H., Hill-Eubanks, D., and Jones, S. V. P. 1993. Muscarinic acetylcholine receptor subtypes: Localization and structure/function. Progr. Brain Res. 98:121–127.
  • Bredt, D. S., and Snyder, S. H. 1992. Nitric oxide, a novel neuronal messenger. Neuron 8:8–11.
  • Bredt, D. S., and Synder, S. H. 1994. Nitric oxide: A physiologic messenger molecule. Annu. Rev. Biochem. 63:175–195.
  • Brimijoin, S. 1983. Molecular forms of acetylcholinesterase in brain, nerve, and muscle: Nature, localization, and dynamics. Prog. Neurobiol. 21:291–322.
  • Brookes, P. S., Bolanos, J. B., and Heales, S. J. 1999. The assumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Lett. 446:261–263.
  • Brooksbank, B. W. L., Martinez, M., Atkinson, D. J., and Balazs, R. 1978. Biochemical development of the human brain. I. Some parameters of the cholinergic system. Dev. Neurosci. 1:267–284.
  • Brorson, J. R., Schumacker, P. T., and Zhang, H. 1999. Nitric oxide acutely inhibits neuronal energy production. J. Neurosci. 19:147–158.
  • Brown, G. C. 1999. Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta. 1411:351–369.
  • Brunori, M., Guiffre, A., Sarti, P., Stubaur, G., and Wilson, M. T. 1999. Nitric oxide and cellular respiration. Cell. Mol. Life Sci. 56:549–557.
  • Burney, S., Tamir, S., and Tannenbaum, S. R. 1997. A mechanistic analysis of nitric oxide-induced cellular toxicity. Nitric oxide 1:130–144.
  • Bus, J. S., and Gibson, J. E. 1974. Bidrin: Perinatal toxicity and effect on the development of brain acetylcholinesterase and choline acetyltransferase in mice. Food Cosmet. Toxicol. 12:313–322.
  • Butcher, S. H., Butcher, L. L., Harms, M. S., and Jenden, D. J. 1976. Fast fixation of brain in situ by high intensity microwave irradiation: Application to neurochemical studies. J. Microwave Power. 11:61–65.
  • Butcher, L. L., and Woolf, N. J. 1986. Cholinergic systems in the brain and spinal cord: Anatomic organization and overview of functions. In Alzheimer’s and Parkinson Disease: Advances in behavioral biology, eds. A. Fisher, I. Hanin, and C. Lachman, 5-16. Plenum Press: New York.
  • Campbell, C. G., Seidler, F. J., and Slotkin, T. A. 1997. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res. Bull. 43:179–189.
  • Cairns, N. J., and Wonnacott, S. 1988. [3H](-)nicotine binding sites in fetal human brain. Brain Res. 475:1–7.
  • Candy, J. M., Perry, E. K., Perry, R. H., Bloxham, C. A., Thompson, J., Johnson, M., Oakley, A. E., and Edwardson, J. A. 1985. Evidence for early prenatal development of cortical cholinergic afferents from the nucleus of Meynert in the human fetus. Neurosci. Lett. 61:91–95.
  • Carney, J. M., and Floyd, R. A. 1991. Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agent: A novel series of nonlipid free radical scavengers. J. Mol. Neurosci. 3:47–57.
  • Castano, A., and Tarazona, J. V. 1994. ATP assay on cell monolayers as an index of cytotoxicity. Bull. Environ. Contam. Toxicol. 53:309–316.
  • Castoldi, A. F., Manzo, L., and Costa, L. G. 1993. Cyclic GMPformation induced by muscarinic receptors is mediated by nitric oxide synthesis in rat cortical primary cultures. Brain Res. 610:57–61.
  • Cevohic, G., Dettbarn, W-D., and Welsch, F. 1972. Effects of an organic phosphate cholinesterase inhibitor on growth hormone and prolactin of pituitary and ChE of brain. Science 175:1256–1258.
  • Chambers, J. E. 1992. The role of target-site activation of phosphorothionates in acute toxicity. In Organophosphates, chemistry, fate and effects, eds. J. E. Chambers and P. E. Levi, 229-239. Academic Press: San Diego, CA.
  • Chambers, J. E., and Chambers, H. W. 1990. Time course of inhibition of acetylcholinesterase and aliesterase following parathion and paraoxon exposure in rats. Toxicol. Appl. Pharmacol. 103:420–429.
  • Chapman, J. F., Woodard, L. L., and Silverman, L. M. 1987. Creatine kinase isoenzymes. In Methods in Clinical Chemistry, eds. A. J. Pesce and L. A. Kaplan, 891-896. The C. V. Mosby Co., St. Louis.
  • Chaudhury, J., Chakraborti, T. K., Chanda, S., and Pope, C. N. 1993. Differential modulation of organophosphate-sensitive muscarinic receptors in rat brain by parathion and chlorpyrifos. J. Biochem. Toxicol. 8:207–216.
  • Choi, D. W. 1990. Methods for antagonizing glutamate neurotoxicity. Cerebrovasc. Brain Metab. Rev. 2:105–147.
  • Chow, C. K., Ibrahim, W., Wei, Z., and Chan, A. C. 1999. Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Radic. Biol. Med. 27:580–587.
  • Cimino, M., Marini, P., Fornasari, D., Cattabeni, F., and Clementi, F. 1992. Distribution of nicotinic receptors cynomolgus monkey brain and ganglia: Localization of a3 subunitmRNA, a-bungarotoxin and nicotine binding sites. Neuroscience 51:77–86.
  • Clarke, P. B. S., Reuben, M., and El-Bizri, H. 1994. Blockade of nicotinic responses by physostigmine, tacrine, and other cholinesterase inhibitors in rat striatum. Br. J. Pharmacol. 111:695.
  • Clement, J. E. 1989. Role of aliesterases in organophosphatepoisoning. Fundam. Appl. Toxicol. 4:S94–S105.
  • Clos, J., Ghandour, S., Eberhart, R., Vincendon, G., and Gombos, G. 1989. The cholinergic system in developing cerebellum: Comparative study of normal, hypothyroid, and underfed rats. Dev. Neurosci. 11:188–204.
  • Clouet, D. H., and Waelsch, H. 1963. Amino acid and protein metabolism of the brain. IX. The effect of an organophosphorus inhibitor on the incorporation of [14C] lysine into the proteins of rat brain. J. Neurochem. 10:51–63.
  • Corbett, J. R., Wright, K., and Baillie, A. C. 1984. The biochemical mode of action of pesticides. pp. 99-140, 2nd ed., Academic Press, London.
  • Costa, L. G., and Murphy, S. D. 1983. [3H]-nicotine binding in rat brain: Alteration after chronic acetylcholinesterase inhibition. J. Pharmacol. Exp. Ther. 226:392–397.
  • Costa, L. G., Schwab, B. W., Hand, H., and Murphy, S. D. 1981. Reduced [3H]quinuclidinyl benzylate binding to muscarinic receptors in disulfoton-tolerant mice. Toxicol. Appl. Pharmacol. 60:441–550.
  • Costa, L. G., Schwab, B. W., and Murphy, S. D. 1982a. Tolerance to anticholinesterase compounds in mammals. Toxicology 25:79–97.
  • Costa, L. G., Schwab, B. W., and Murphy, S. D. 1982b. Differential alterations of cholinergic muscarinic receptors in acute and chronic tolerance to organophosphorus insecticides. Biochem. Pharmacol. 31:3407–3413.
  • Coudray-Lucas, C., Prioux-Guyonneau, M., Sentenac, H., Cohen, Y., and Wepierre, J. 1983. Brain catecholamine metabolism changes and hypothermia in intoxication by anticholinesterase agents. Acta Pharmacol. Et. Toxicol. 52:224–229.
  • Coudray-Lucas, C., Prioux-Guyonneau, M., Sentenac, H., Cohen, Y., and Wepierre, J. 1987. Changes in brain monoamine content and metabolism induced by paraoxon and soman intoxication. Effect of atropine.Xenobiotica 17:1131–1138.
  • Court, J., and Clementi, F. 1995. Distribution of nicotinic subtypes in human brain. Alzheimer’s Disease Assoc. Disorders 9: 6-14,Suppl. 2.
  • Court, J. A., Perry, E. K., Johnson, M., Piggott, M. A., Kerwin, J. A., Perry, R. H., and Ince, P. G. 1993. Regional patterns of cholinergic and glutamate activity in the developing and aging human brain. Dev. Brain Res. 74:73–82.
  • Court, J. A., Perry, E. K., Spurden, D., Griffiths, M., et. al. 1995. The role of the cholinergic system in the development of the human cerebellum. Dev. Brain Res. 90:159–167.
  • Coyle, J. T., and Yamamura, H. I. 1976. Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain. Brain Res. 118:429–440.
  • Dam, K., Seidler, F. J., and Sloktin, T. A. 1998. Developmental neurotoxicity of chlorpyrifos: Delayed targeting of DNA synthesis after repeated administration. Dev. Brain Res. 108:39–45.
  • Dam, K., Garcia, S. J., Seidler, F. J., and Slotkin, T. A. 1999. Neonatal chlorpyrifos exposure alters synaptic development and neoronal activity in cholinergic and catecholaminergic pathways. Dev. Brain Res. 116:9–20.
  • Dam, K., Seidler, F. J., and Slotkin, T. A. 2000. Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotive activity. Dev. BrainRes. 121:179–187.
  • Dawson, V. 1995. Nitric oxide: Role in neurotoxicity. Clin. Exp. Pharmacol. Physiol. 22:305–308.
  • Dawson, V. L., and Dawson, T. M. 1996. Nitric oxide actions in neurochemistry. Neurochem. Intl. 29:97–110.
  • Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R., and Snyder, S. H. 1993. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13:2651–2661.
  • DeSarno, P., and Giacobini, E. 1989. Modulation of acetylcholine release by nicotinic receptors in the rat brain. J. Neurosci. Res. 22:194–200.
  • Desole, M. S., Esposito, G., Migheli, R., et al. 1997. Glutathione deficiency potentiates manganese toxicity in rat striatum and brainstem and in PC12 cells. Pharmacol. Res. 36:285–292.
  • Domschke, W., Domagk, G. F., Domschke, S., and Erdmann, W. D. 1970. Uber die Wirkung von Soman und Diisopropylfluorophosphat auf die Enzymbiosynthese in der Rottenleber. Arch. Toxicol. 26:76–83.
  • Dunlop, D. S., vanElden, W., and Lajtha, A. 1975. A method for measuring brain protein synthesis rates in young and adult rats. J. Neurochem. 24:337344.
  • Ebadi, M., Marwah, J., and Chopra, R. 2001. Mitochondrial ubiquinone (Coenzyme Q10): Biochemical, functional, medical and therapeutic aspects in human health and disease. Vol. 1 and 2, Prominent Press, Scottsdale, AZ.
  • Edwards, J. A., and Brimijoin, S. 1982. Divergent regulation of acetyl-cholinesterase and butyrylcholinesterase in tissue of the rat. J. Neurochem. 38:1393–1403.
  • Ehlert, F. J., Kokka, N., and Fairhurst, A. S. 1980. Altered [3H]-quinuclidinyl benzylate binding in the striatum of rats followin chronic cholinesterase inhibition with diisopropylfluorophosphate. Mol. Pharmacol. 17:24–30.
  • El-Etri, M. M., Nickell, W. T., Ennis, M., Saku, K. A., and Shipley, M. T. 1992. Brain norepinephrine reductions in soman-intoxicated rats: Association with convulsions and AChE inhibition, time course, and relation to other monoamines. Exp. Neurol. 118:153–163.
  • Elliott, K. J., Ellis, S. B., Berkhan, K. J., Urrutia, A., Chavez-Noriega, L. E., Johnson, E. C., Velicelebi, G., and Harpold, M. M. 1996. Comparative structure of human neuronal a2-a7 and fS2-fi4 nicotinic acetylcholine receptor subunits and fractional expression of the a2, a3, a4, a7, fS2, and fS4 subunits. J. Mol. Neurosci. 7:217–228.
  • Ellman, G. L., Courtney, K. O., Andres, V., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.
  • Eriksson, P., Falkeborn, Y., Nordberg, A., and Slanina, P. 1984. Effects of DDT on muscarine- and nicotine-like binding sites in CNS of immature and adult mice. Toxicol. Lett. 22:329–334.
  • Falbergrova, J., Zhao, Q., Katsura, K. I., and Siesjo, B. K. 1995. N-tert-butyl-a-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc. Natl. Acad. Sci. USA. 92:5057–5061.
  • Farber, E. 1973. ATP and cell integrity. Fed. Proc. 32:1534–1539.
  • Fariello, R. G., Ghilardi, O., Peschechera, A., Ramacci, M. T., and Angelucci, L. 1988. Regional distribution of ubiquinones and tocopherols in the mouse brain: Lowest content of ubiquinols in the substantia nigra. Neuropharmacology. 10:1077–1080.
  • Fernando, J. C. R., Hoskins, B., and Ho, I. K. 1984a. Effect of striatal dopamine metabolism and differential motor behavioral tolerance following chronic cholinesterase inhibition with diisopropylfluorophosphate. Pharmacol. Biochem. Behav. 20:951–957.
  • Fernando, J. C. R., Hoskins, B., and Ho, I. K. 1984b. A striatal sertonergic involvement in the behavioral effects of anticholinesterase organophosphates. Eur. J. Pharmacol. 98:129–132.
  • Fielder, E. P., Marks, M. J., and Collins, A. C. 1990. Postnatal development of two nicotinic cholinergic receptors in seven mouse brain regions. Int. J. Dev. Neurosci. 5:533–540.
  • Firestein, B. L., and Bredt, D. S. 1999. Interaction of neuronal nitric-oxide synthase and phosphofructokinase-m. J. Biol. Chem. 274:10545–10550.
  • Fiscus, R. R., and Van Meter, W. G. 1977. Effects of parathion on turnover and endogenous levels of norepinephrine (NE) and dopamine (DA) in rat brain. Fed. Proc. 36:951.
  • Fitzgerald, B. B., and Costa, L. G. 1993. Modulation of muscarinic receptors and acetylcholinesterase activity in lymphocytes and in brain areas following repeated organophosphate exposure in rats. Fundam. Appl. Toxicol. 20:210216.
  • Fornai, F., Piaggi, S., Gesi, M., Saviozzi, M., Lenzi, P., Paparelli, A., and Casini, A. F. 2001. Subcellular localization of glutathione-dependent dehydroascorbate reductase within specific rat brain regions. Neuroscience 104:15–31.
  • Fujita, K., Kobayashi, A., Suzuki, S., and Nakazawa, K. 1991. Changes of serotonin and catecholamines are related to pharmacokinetic alterations of chlomipramine in rat brain. Eur. J. Pharmacol. 204:227–233.
  • Garthwaite, J. 1991. Glutamate, nitric oxide, and cell-cell signaling in the nervous system. Trends Neurosci. 14:60–67.
  • Garthwaite, J., and Boulton, C. L. 1995. Nitric oxide signaling in the central nervous system. Annu. Rev. Physiol. 57:683–706.
  • Geneser, F. A. 1987. Distribution of acetylcholinesterase in the hippocampal region of the rabbit: II Subiculum and hippocampus. J. Comp. Neurol. 262:90104.
  • Glisson, S. N., Karczmar, A. G., and Barnes, L. 1974. Effects of diisopropyl phosphororfluoridate on acetylcholine, cholinesterase, and catecholiamines of several parts of rabbit brain. Neuropharmacology 13:623–631.
  • Gorenstein, C., Gallardo, K. A., and Robertson, R. T. 1991. Molecular forms of acetylcholinesterase in cerebral cortex and dorsal thalamus of developing rats. Dev. BrainRes. 61:271–276.
  • Gotti, C., Fornasari, D., and Clementi, F. 1997. Human neuronal nicotinic receptors. Progr. Neurobiol. 53:199–237.
  • Gross, W. L., Bak, M. I., Ingwall, J. S., Arstall, M. A., Smith, T. W., Balligand, J.-L., and Kelly, R. A. 1966. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc. Natl. Acad. Sci. USA. 93:5604–5609.
  • Gulati, A., Hussain, G., and Srimal, R. C. 1991. Effect of repeated administration of clonidine on adrenergic, cholinergic (muscarinic), Dopaminergic, and serotonergic receptors in brain regions of rats. Drug Dev. Res. 22:141152.
  • Gunasekar, P. G., Kanthasamy, A. G., Borowitz, J. L., and Isom, G. E. 1995. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: Implication for cell death. J. Neurochem. 65:20162021.
  • Gupta, R. C., Welsch, F., Thornburg, J. E., and Paul, B. S. 1983. Effect of chloramphenicol pretreatment on malathion-induced acute toxicity in the rat. J. Toxicol. Environ. Health 11:897–905.
  • Gupta, R. C. 1994a. Mechanistic and clinical approaches in antidotal treatment with memantine and atropine against oxamyl and methomyl acute toxicity. Indian J. Toxicol. 1:1–10.
  • Gupta, R. C. 1994b. Carbofuran toxicity. J. Toxicol. Environ. Health. 43:383418.
  • Gupta, R. C. 1999. Carboxylesterases. In Encyclopedia of Toxicology. Vol I. ed. P. Wexler, 229-232. Academic Press: New York.
  • Gupta, R. C., and Dettbarn, W.-D. 1986. Role of uptake of [14C] valine into protein in the development of tolerance to diisopropylphosphorofluoridate (DFP) toxicity. Toxicol. Appl. Pharmacol. 84:551–560.
  • Gupta, R. C., and Dettbarn, W.-D. 1987a. Iso-OMPA-induced potentiation of soman toxicity in rat. Arch. Toxicol. 61:58–62.
  • Gupta, R. C., and Dettbarn, W.-D. 1987b. Interaction of cycloheximide and diisopropyphosphorolfluoridate (DFP) during subchronic administration in rat. Toxicol. Appl. Pharmacol. 90:52–59.
  • Gupta, R. C., and Dettbarn, W.-D. 1993. Role of carboxylesterases intheprevention and potentiation of N-methylcarbamate toxicity. Chemico-Biol. Interact. 87:295–303.
  • Gupta, R. C., and Dettbarn, W.-D. 2003. Protection by 7-nitroindazole of kainic acid-induced seizures, NO and energy metabolites in rat brain regions. Brain Res. Submitted.
  • Gupta, R. C., and Goad, J. T. 2000. Role of high-energy phosphates and their metabolites in protection of carbofuran-induced biochemical changes in diaphragm muscle by memantine. Arch. Toxicol. 74:13–20.
  • Gupta, R. C., and Kadel, W. L. 1989a. Concentrated role of carboxylesterases in the potentiation of carbofuran toxicity by iso-OMPA pretreatment. J. Toxicol. Environ. Health 26:447–457.
  • Gupta, R. C., and Kadel, W. L. 1989b. Prevention and antagonism of acute carbofuran intoxication by memantine and atropine. J. Toxicol. Environ. Health 28:111–122.
  • Gupta, R. C., and Kadel, W. L. 1990a. Toxic interaction of tetraisopropylpyrophosphoramide and propoxur: Some insights into the mechanisms. Arch. Environ. Contam. Toxicol. 19:917–920.
  • Gupta, R. C., and Kadel, W. L. 1990b. Methyl parathion acute toxicity: Prophylaxis and therapy with memantine and atropine. Arch. Intl. De Pharmacod. EtdeTher 305:208–221.
  • Gupta, R. C., and Kadel, W. L. 1991. Novel effects of memantine in antagonizing acute aldicarb toxicity: Mechanistic and applied considerations. Drug Dev. Res. 24:329–341.
  • Gupta, R. C., Thornberg, J. E., Stedman, D. B., and Welsch, F. 1984. Effect of subchronic administration of methyl parathion on in vivo protein synthesis in pregnant rats and their conceptuses. Toxicol. Appl. Pharmacol. 72:457468.
  • Gupta, R. C., Rech, R. H., Lovell, K. L., Welsch, F., and Thornberg, J. E. 1985a. Brain cholinergic, behavioral, and morphological development in rats exposed in utero to methyl parathion. Toxicol. Appl. Pharmacol. 77:405–413.
  • Gupta, R. C., Patterson, G. T., and Dettbarn, W.-D. 1985b. Mechanisms involved in the development of tolerance to DFP toxicity. Fundam. Appl. Toxicol. 5:S17:S28.
  • Gupta, R. C., Patterson, G. T., and Dettbarn, W.-D. 1986. Mechanism of toxicity and tolerance to diisopropylphosphorofluoridate at the neuromuscular junction of the rat. Toxicol. Appl. Pharmacol. 84:S41–S50.
  • Gupta, R. C., Patterson, G. T., and Dettbarn, W.-D. 1987a. Biochemical and histochemical alterations following acute soman intoxication in the rat. Toxicol. Appl. Pharmacol. 87:393–402.
  • Gupta, R. C., Patterson, G. T., and Dettbarn, W.-D. 1987b. Acute tabun toxicity; Biochemical and histochemical consequences in brain and skeletal muscles of rat. Toxicology 46:329–341.
  • Gupta, R. C., Patterson, G. T., and Dettbarn, W.-D. 1991. Comparison of cholinergic and neuromuscular toxicity following acute exposure to sarin and VX in rat. Fundam. Appl. Toxicol. 16:449–458.
  • Gupta, R. C., Sanecki, R. K., and Goad, J. T. 1998. Biochemical and microscopic changes in brain by acute carbofuran toxicity (Abstract). Toxicol. Sci. 42:156.
  • Gupta, R. C., Goad, J. T., Milatovic, D., and Dettbarn, W.-D. 2000a. Cholinergic and noncholinergic brain biomarkers of insecticide exposure and effects. Hum. Exper. Toxicol. 19:297–308.
  • Gupta, R. C., Milatovic, D., Zivin, M., and Dettbarn, W.-D. 2000b. Seizure-induced changes in energy metabolites and effects of N-tert butyl-a-phenylnitrone (PBN) and vitamin E in the rats. Pflg. Arch. Eur. J. Physiol. 440(Suppl.): R160-162.
  • Gupta, R. C., Milatovic, D., and Dettbarn, W.-D. 2001a. Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: Protection by antioxidants. Neurotoxicology. 22:271–282.
  • Gupta, R. C., Milatovic, D., and Dettbarn, W.-D. 2001b. Nitric oxide modulates high-energy phosphates in brain regions of rats intoxicated with di-isopropylphosphorofluoridate or carbofuran: Prevention by N-tert-butyl-a- phenylnitrone or vitamin E. Arch. Toxicol. 75:346–356.
  • Hallak, M., and Giacobini, E. 1986. Relation of brain regional physostigmine concentration to cholinesterase activity and acetylcholine and choline levels in rat. Neurochem. Res. 11:1037–1048.
  • Hallak, M., and Giacobini, E. 1989. Physostigmine, tacrine, and metrifonate: The effect of multiple doses on acetylcholine metabolism in rat brain. Neuropharmacology. 25:199–206.
  • Hartvig, P., Torstenson, R., Bjurling, P., Fasth, K. J., Langstrom, B., and Nordberg, A. 1997. Regional brain distribution and binding of the muscarinic receptor agonist CI-979 studied by Prositron emission tomography in the monkey. Dem. Geriatr. Cogn. Disord. 8:259–266.
  • Hellstrom-Lindahl, E., Gorbounova, O., Seiger, A., Mousari, M., and Nordberg, A. 1998. Regional distribution of nicotinic receptors during prenatal development of human brain and spinal cord. Develop. Brain Res. 108:147–160.
  • Hu, J., and El-Fakahany, E. E. 1993. Role of intercellular and intracellular communication by nitric oxide in coupling of muscarinic receptors to activation of guanylate cyclase in neuronal cells. J. Neurochem. 61:578–585.
  • Huff, R. A., and Abou-Donia, M. B. 1994. Cis-methyldioxolane specifically recognizes the M2 muscarinic receptor. J. Neurochem. 62:388–391.
  • Huff, R. A., Abu-Quare, A. W., and Abou-Donia, M. B. 2001. Effects of sub-chronic in vivo chlorpyrifos exposure on muscarinic receptors and adenylate cyclase of rat striatum. Arch. Toxicol. 75:480–486.
  • Hughes, P., Youg, D., and Dragunow, M. 1993. MK-801 sensitizes rats to pilocarpine induced seizures and status epilepticus. NeuroReport 4:314–316.
  • Jacobsson, S. O. P., Cassel, G. E., and Persson, S. A. 1999. Increased levels of nitrogen oxides and lipid peroxidation in the brain after induced seizures. Arch. Toxicol. 73:269–273.
  • Joli, M., LeNovere, N., Hill, J. A. Jr., and Changeux, J.-P. 1995. Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems. J. Neurosci. 15:1912–1939.
  • Jope, R. S. 1979. High affinity choline transport and acetylCoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res. Rev. 1:313–344.
  • Jope, R. S., Morreset, R. A., and Sneed, O. C. 1986. Characterization of lithium potentiation of pilocarpine induced status epilepticus in rats. Exp. Neurol. 91:471–480.
  • Jope, R. S., Simonato, M., and Lally, K. 1987. Acetylcholine content in the brain is elevated by status epilepticus induced by lithium and pilocarpine. J. Neurochem. 49:944–951.
  • Kaasik, A., Minajeva, A., DeSousa, E., Ventura-Clapier, R., and Veksler, V. 1999. Nitric oxide inhibits cardiac energy production via inhibition of mitochondrial creatine kinase. FEBS Lett. 444:75–77.
  • Kalin, A., Norling, B., Appelkvist, E. L., and Dallner, G. 1987. Ubiquinone biosynthesis by the microsomal from rat liver. Biochim. Biophys. Acta. 926:70–78.
  • Karczmar, A. G., Srinivasan, R., and Bernsohn, J. 1973. Cholinergic function in the developing fetus. In Fetal Pharmacology, ed. L. Boreus, 127-177. Raven Press: New York.
  • Kasa, P., Bansaghy, K., Rakonczay, Z., and Gulya, K. 1982. Postnatal development of the acetylcholine system in different parts of the rat cerebellum. J. Neurochem. 39:1726–1732.
  • Kemp, R. B., Cross, D. M., and Meredith, R. W. J. 1986. Adenosine triphosphate as an indicator of cellular toxicity in vitro. Fd. Chem. Toxicol. 24:465466.
  • Kewitz, H., Pleul, O., and Mann, E. 1977. Pre- and postnatal development and drug induced alterations of free and bound acetylcholine in rat brain. Naunyh-Schmiedberg's Arch. Pharmacol. 298:149–155.
  • Khan, W. A., Dechkovskaia, A. M., Herrick, E. A., Jones, K. H., and Abou-Donia, M. B. 2000. Acute sarin exposure causes differential regulation of choline acetyltransferase, acetylcholinesterase, and acetylcholine receptors in the central nervous system of the rat. Toxicol. Sci. 57:112120.
  • Khandelwal, J. K., Szilagyi, P., Barker, L. A., and Green, J. P. 1981. Simultaneous measurement of acetylcholine and choline in brain by pyrolysis-gas chromatography-mass-spectrometry. Eur. J. Pharmacol. 76:145–156.
  • Kim, Y. B., Hur, G. H., Shin, S. H., Sok, D. E., Kang, J. K., and Lee, Y. S. 1999. Organophosphate-induced brain-injuries: Delayed apoptosis mediated by nitric oxide. Environ. Toxicol. Pharmacol. 17:147–152.
  • Kobayashi, H., Yuyama, A., Kajita, T., Shimura, K., Ohkawa, T., and Satoh, K. 1985. Effects of insecticidal carbamates on brain acetylcholine content, acetylcholinesterase activity and behavior in mice. Toxicol. Lett. 29:153159.
  • Kobayashi, H., Yayama, A., and Chiba, K. 1986. Cholinergic system of brain tissue in rats poisoned with the organophosphate, O,O-dimethyl O-(2,2-dichlorovinyl) phosphate. Toxicol. Appl. Pharmacol. 82:32–39.
  • Kobayashi, H., Yuyama, A., Ohkawa, T., and Kajita, T. 1988. Effect of single or chronic injection with a carbamate, propoxur, on the brain cholinergic system and behavior of mice. Jpn. J. Pharmacol. 47:21–27.
  • Kobayashi, H., Yuyama, A., Shioya, K., and Sato, K. 1989. Effects of a carbamate, BPMC, on the central cholinergic functions and behavior of mice. Jpn. J. Vet. Sci. 51:789–795.
  • Koelle, W. A., Smyrl, E.,Ruch, G., Siddons, V., and Koelle, G. B. 1977a. Effects of protection of butyrylcholinesterase on regeneration of ganglionic acetyl-cholinesterase. J. Neurochem. 28:307–311.
  • Koelle, G. B., Koelle, W. A., and Smyrl, E. 1977b. Effects of inactivation of butyrylcholinesterase on steady state and regenerating levels of ganglionic acetylcholinesterase. J. Neurochem. 28:313–319.
  • Kopperschlager, G., and Kirchberger, J. 1996. Methods for the separation of lactate dehydrogenase and clinical significance of the enzyme. J. Chromatogr. 684:25–49.
  • Kotegawa, M., Sugiyama, M., Shoji, T., Haramaki, N., and Agura, R. 1993. Effect of a-tocopherol on high-energy phosphate metabolite levels in rat heart by 31P-NMR using a Langendorff perfusion technique. J. Mol. Cell. Cardiol. 25:1067–1074.
  • Kozar, M. D., Overstreet, D. H., Chippendale, T. C., and Russell, R. W. 1976. Changes of acetylcholinesterase activity in three major brain areas and related changes in behavior following acute treatment with diisopropylfluorophosphate. Neuropharmacology 15:291–298.
  • Kuhar, M. J., and Murrin 1979. Sodium-dependent high affinity choline uptake. J. Neurochem. 30:15–21.
  • Kuhar, M. J., Sethy, V. H., Roth, R. H., and Aghjanian, G. K. 1973. Choline: Selective accumulation of central cholinergic neurons. J. Neurochem. 20:581593.
  • Kuhr, R. J., and Dorough, H. W. 1976. Carbamate insecticides: Chemistry, biochemistry and toxicology, 133-134. Cleveland, OH: CRC Press.
  • Kumar, A., and Schliebs, R. 1992. Postnatal laminate development of cholinergic receptors, protein kinase c and dihydropyridine-sensitive calcium antagonist binding in rat visual cortex. Effect of visual deprivation. Intl. J. Dev. Neurosci. 10:491–504.
  • Lai, J. C. K., Leung, T. K. C., and Lim, L. 1982. The ontogeny of acetyl-cholinesterase activities in rat brain regions and the effect of chronic treatment with manganese chloride. J. Neurochem. 39:1767–1769.
  • Lajtha, A., and Dunlop, D. 1981. Turnover of protein in the nervous system. Life Sci. 29:755–767.
  • Lassiter, T. L., Barone, Jr, S., and Padilla, S. 1998. Ontogenic differences in the regional and cellular acetylcholinesterase and butyrylcholinesterase activity in the rat brain. Dev. Brain Res. 105:109–123.
  • Lassiter, T. L., Padilla, S., Mortensen, S. R., Chanda, S. M., Moser, V. C., and Barone, S. Jr. 1998. Gestational exposure to chlorpyrifos: Apparent protection of the fetus. Toxicol. Appl. Pharmacol. 152:56–65.
  • Lander, J. M., and Schambra, U. B. 1999. Morphogenetic roles of acetylcholine. Environ. Health Perspect. 107:65–69.
  • Layer, P. G. 1983. Comparative localization of acetylcholinesterase and pseudocholinesterase during morphogenesis of the chick brain. Proc. Natl. Acad. Sci. U.S.A. 80:6413–6417.
  • Lee, N. H., and El-Fakahany, E. E. 1991. Allosteric antagonists of the muscarinic acetylcholine receptor. Biochem. Pharmacol. 42:199–205.
  • Legrand, C., Bour, J. M., Jacob, C., Capiaumont, J. et al. 1992. Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cell as marker. J. Biotechnol. 25:231–243.
  • Lenox, R. H., Kant, G. J., and Meyerhoff, J. L. 1980. Regional sensitivity of cyclic AMP and cyclic GMP in rat brain to central cholinergic stimulation. Life Sci. 26:2201–2209.
  • Levey, A. I., Kitt, C. A., Simonds, W. F., Price, D. L., and Brann, M. R. 1991. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 11:3218–3226.
  • Levy, A., Brandies, R., Treves, T. A., et al. 1994. Transdermal physostigmine in the treatment of Alzheimer's disease. Alzheimer’s Dis. Assoc. Disord. 8:1521.
  • Lim, D. K., Hoskins, B., and Ho, I. K. 1986. Correlation of muscarinic receptor density and acetylcholinesterase activity in repeated DFP-treated rats after the termination of DFP administration. Eur. J. Pharmacol. 123:223–228.
  • Lim, D. K., Hoskins, B., and Ho, I. K. 1987a. Evidence for the involvement of presynaptic functions in tolerance to diisopropylfluorophosphate. Toxicol. Appl. Pharmacol. 90:465–476.
  • Lim, D. K., Porter, A. B., Hoskins, B., and Ho, I. K. 1987b. Changes in ACh levels in the rat brain during subacute administration of diisopropylfluorophosphate. Toxicol. Appl. Pharmacol. 90:477–489.
  • Liu, P.-S., Kao, L.-S., and Lin, M. K. 1994. Organophosphates inhibit cate-cholamine secretion and calcium influx in bovine adrenal chromaffin cells. Toxicology 90:81.
  • Liu, J., and Pope, C. N. 1996. Effects of chlorpyrifos on high-affinity choline uptake and [3 H] Hemicholinium-3 binding in rat brain. Fundam.Appl. Toxicol. 34:84–90.
  • Liu, J., Oliver, K., and Pope, C. N. 1999. Comparative neurochemical effects of repeated methyl parathion or chlorpyrifos exposure in neonatal and adult rats. Toxicol. Appl. Pharmacol. 158:186–196.
  • Lynch, G. S., Lucas, P. A., and Deadwyler, S. A. 1972. The demonstration of acetylcholinesterase containing neurons within the caudate nucleus of the rat. BrainRes. 45:617–621.
  • Ma, T., Cai, Z., Wellman, S. E., and Ho, I. K. 2001. A quantitative histochemistry technique for measuring regional distribution of acetylcholinesterase in the brain using digital scanning densitometry. Anal. Biochem. 296:18–28.
  • Mailman, R. B., Krigman, M. R., Frye, G. D., et al. 1983. Effects of postnatal trimethyltin treatment on CNS catecholamine, GABA, and acetylcholine systems in the rat. J. Neurochem. 40:1423–1429.
  • Marchand, A., Chapoutier, G., and Massoulie, J. 1977. Developmental aspects of acetylcholinesterase activity in chick brain. FEBS Lett. 78:233–236.
  • Marks, M. J., and Collins, A. C. 1982. Characterization of nicotine binding in mouse brain and comparison with the binding of a-bungarotoxin and quinuclidinyl benzilate. Mol. Pharmacol. 22:554–564.
  • Marquis, J. K. 1985. Non-cholinergic mechanisms of insecticide toxicity. Trends in Pharmacol. Sci. 6:59–60.
  • Massoulie, J., Pezzementi, L., Bon, S., Krejci, E., and Vallette, F.-M. 1993. Molecular and cellular biology of cholinesterase. Progr. Neurobiol. 41:3191.
  • McBride, J. K., Rodgerson, D. O., and Helborne, L. H. 1990. Human, rabbit, bovine, and porcine creatine kinase isoenzymes are glycoproteins. J. Clin. Lab. Anal. 4:196–198.
  • McDonough, J. H., and Shih, T.-M. 1997. Neuropharmacological mechanisms of nerve agent induced seizure and neuropathology. Neurosci. Behav. Rev. 21:559–579.
  • McLennan, H. R., and Esposti, M. D. 2000. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J. Bioenerg. Biomembr. 32:153–162.
  • Meneguz, A., Bisso, G. M., and Michalek, H. 1989. Alterations in the distribution of cholinesterase molecular forms in maternal and fetal brain following diisopropylfluorophosphate treatment of pregnant rats. Neurochem. Res. 14:285–291.
  • Meneguz, A., Bisso, G. M., and Michalek, H. 1992. Age-related changes in acetylcholinesterase and its molecular forms in various brain areas of rats. Neurochem. Res. 17:785–790.
  • Michalek, H., Pintor, A., Fortuna, S., and Bisso, G. M. 1985. Effects of diisopropylfluorophosphate on brain cholinergic systems of rats at early developmental stages. Fundam. Appl. Toxicol. 5:S204–S212.
  • Miner, L. L., Marks, M. J., and Collins, A. C. 1985. Relationship between nicotine-induced seizures and hippocampal nicotinic receptors. Life Sci. 37:75–83.
  • Milatovic, D., Radic, Z., Zivin, M., and Dettbarn, W.-D. 2000a. Atypical effect of some spin trapping agents: Reversible inhibition of acetylcholinesterase. Free Radic. Biol. Med. 28:597–603.
  • Milatovic, D., Zivin, M., and Dettbarn, W.-D. 2000b. The spin trapping agent phenyl-N-tert-butyl-nitrone (PBN) prevents excitotoxicity in skeletal muscle. Neurosci. Lett. 278:25–28.
  • Milatovic, D., Zivin, M., Gupta, R. C., and Dettbarn, W.-D. 2001. Alterations in cytochrome c oxidase activity and energy metabolites in response to kainic acid-induced status epilepticus. Brain Res. 912:67–78.
  • Milatovic, D., Gupta, R. C., and Dettbarn, W.-D. 2002. Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 957:330337.
  • Mitchelson, F. 1988. Muscarinic receptor differentiation. Pharmacol. Ther. 37:357–423.
  • Miyajima, T., and Kotake, Y. 1995. Spin trap phenyl N-tert-butylnitrone (PBN) inhibits induction of nitric oxide synthase in endotoxin-induced shock in mice. Biochem. Biophys. Res. Commun. 215:114—121.
  • Miyajima, T., and Kotake, Y. 1997. Optimal time and dosage of phenyl N-tert-butylnitrone (PBN) for the inhibition of nitric oxide synthase induction in mice. Free Radic. Biol. Med. 22:463–470.
  • Modak, A. T., Stavinoha, W. B., and Weintraub, S. T. 1975. Dichlorvos and the cholinergic system: Effect on cholinesterase and acetylcholine and choline contents of rat tissues. Arch. Int. de Pharmacodyn. Et de Ther. 217:293301.
  • Molinengo, L., and Orsetti, M. 1998. Actions of diisopropylfluorophosphate and of diacetylmonoxime on acetylcholine levels and on cholinesterase activity in the central nervous system. Arch. Int. de Pharmacodyn. Etde Ther. 295:17–27.
  • Monks, T. J., Ghersi-Egea, J.-F., Philbert, M., Cooper, A. J. L, and Lock, E. A. 1999. Symposium overview: The role of glutathione in neuroprotection and neurotoxicity. Toxicol. Sci. 51:161–177.
  • Moro, V., Badaut, J., Springhetti, V., Edvinsson, L., Seylaz, J., and Lasbennes, F. 1995. Regional Study of the co-localization of neuronal nitric oxide synthase with muscarinic receptors in the rat cerebral cortex. Neuroscience. 69:797805.
  • Morris, B. J., Hicks, A. A., Wisden, W., Darlison, M. G., Hunt, S. P., and Barnard, E. A. 1990. Distinct regional expression of nicotinic acetylcholine genes in chick brain. Mol. Brain Res. 7:305–315.
  • Morrisett,R. A., Jope, R. S., Snead, O. C. III. 1987. Status epilepticus is produced by administration of cholinergic agonists to lithium-treated rats: Comparison with kainic acid. Exp. Neurol. 98:594–604.
  • Muller, F., Dumez, Y., and Massoulie, J. 1985. Molecular forms and solubility of acetylcholinesterase during the embryonic development of rats and human brain. Brain Res. 331:295–302.
  • Naeff, B., Schlumpf, M., Lichtensteiger, W. 1992. Pre- and postnatal development of high-affinity [3H]nicotine binding sites rat brain regions: An autora-diographic study. Dev. Brain Res. 68:163–174.
  • Necchi, D., Virgili, M., Monti, B., Contestabile, A., and Scherini, E. 2002. Regional alterations of the NO/NOS system in the aging brain: A biochemical, histochemical, and immunochemical study in the rat. Brain Res. 933:31–41.
  • Nohl, H., Kozlov, A. V., Staniek, K., and Gille, L. 2001. The multiple functions of coenzyme Q. Bioorg. Chem. 29:1–13.
  • Nordberg, A., and Wahlstrom, G. 1988. Long-term effects on biotransformation of labeled choline in different parts of the rat brain induced by single choline injections. Pharmacol. Toxicol. 62:69–73.
  • Norris, P. J., Faull, R. L., and Emson, P. C. 1996. Neuronal nitric oxide synthase (NOS) mRNA expression and NADPH-diphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains. Mol. Brain Res. 41:36–49.
  • Nowicki, J. P., Duval, D., Poignet, H., and Scatton, B. 1991. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur. J. Pharmacol. 204:339–340.
  • Olney, J., Labruyere, J., and Price, M. 1989. Pathological changes induced cerebrocortical neurons by phencyclidine and related drugs. Science. 244:13601362.
  • Payne, L. K., Stansbury, H. A., and Weiden, M. H. J. 1966. The synthesis and insecticidal properties of some cholinergic trisubstituted acetaldehyde O-(methyl-carbamoyl) oximes. J. Agri. Food Chem. 14:356–365.
  • Pazdernik, T. L., Cross, R., Nelson, S., Samson, F., and McDonough, Jr. J. 1983. Soman-induced depression of brain activity in TAB-pretreated rats: 2-deoxyglucose study. Neurotoxicology 4:27–34.
  • Pazdernik, T. L., Cross, R., Giesler, M., Nelson, S., Samson, F., and McDonough, Jr. J. 1985. Delayed effects of soman: Brain glucose use and pathology. Neurotoxicology. 6:61–70.
  • Pazdernik, T. L., Nelson, S. R., Cross, R., and Samson, F. E. 1996. Chemical-induced seizures: Free radicals as a final common pathway. Proc. Med. Def. Biosci. Rev. 1:413–422.
  • Pazdernik, T. L., Emerson, M. R., Cross, R., Nelson, S. R., and Samson, F. E. 2001. Soman-induced seizures: Limbic activity, oxidative stress and neuro-protective proteins. J. Appl. Toxicol. 21:S87–S94.
  • Pedersen, P. L. 1999. Mithchondrial events in the life and death of animal cells: A brief review. J. Bioenerg. Biomembr. 31:291–304.
  • Perry, E. K., Smith, C. J., Atack, J. R., Candy, J. M., Johnson, M., and Perry, R. H. 1986. Neocortical cholinergic enzyme and receptor activities in the human fetal brain. J. Neurochem. 47:1262–1269.
  • Planas, A. M., Soriano, M. A., Ferrer, I., and Rodriguez, F. E. 1995. Kainic acid-induced heat shock protein-70, mRNA and protein expression is inhibited by MK-801 in certain rat brain regions. Eur. J. Neurosci. 7:293–304.
  • Pogun, S., Demirgoren, S., Taskiran, D., Kanit, L., Yilmaz, O., Koylu, E. O., Balkan, B., and London, E. D. 2000. Nicotine modulates nitric oxide in rat brain. Eur. J. Neuropsychopharmacol. 10:463–472.
  • Pope, C. N. 1999. Organophosphorus pesticides: Do they all have the same mechanism of toxicity? J. Toxicol. Environ. Health PartB. 2:161–181.
  • Priox-Guyonneau, M., Coudray-Lucas, C., Coq, H. M., Cohen, Y., and Wepierre, J. 1982. Modification of rat brain 5-hydroxytryptamine metabolism by sub-lethal doses of organophosphate agents. Acta Pharmacol. et Toxicol. 51:278284.
  • Rakonczay, Z., Vincedon, G., and Zanetta, J. P. 1981. Heterogeneity of rat brain acetylcholinesterase: A study by gel filtration and gradient contrifugation. J. Neurochem. 37:662–669.
  • Ravikumar, B. V., and Sastry, P. S. 1985. Cholinergic muscarinic receptors in human fetal brain: Ontogeny of [3H]quinuclidinyl benzilate binding sites in corpus striatum, brainstem, and cerebellum. J. Neurochem. 45:1948–1950.
  • Reinis, S., and Goldman, J. M. 1980. The development of the brain: Biological and functional perspectives. Springfield, IL., Charles C. Thomas.
  • Rice, M. E., and Russo-Menna, I. 1998. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience. 82:1213–1223.
  • Romero-Vecchione, E., Fatranska, M., and Kvetnansky, R. 1987. Acetyl-cholinesterase activity in several hypothalamic and brain stem nuclei after acute and chronic immobilization stress in rats. Endocrinol. Experint. 21:159165.
  • Rosenberg, P. A. 1988. Catecholamine toxicity in cerebral cortex in dissociated cell culture. J. Neurosci. 8:2887–2894.
  • Rotter, A., Field, P. M., and Raisman, G. 1979. Muscarinic receptors in the central nervous system of the rat. III. Postnatal development of binding of [3H]propylbenzylcholine mustard. Brain Res. Rev. 1:185–205.
  • Rubboli, F., Court, J. A., Sala, C., Morris, B., Chini, B., Perry, E., and Clementi, F. 1994. Distribution of nicotinic receptors in the human hippocampus and thalamus. Eur. J. Neurosci. 6:1596–1604.
  • Russel, R. W., Overstreet, D. H., Cotman, C. W., Carson, V. G., Churchill, L., Dalglish, F. W., and Vasquez, B. J. 1975. Experimental tests of hypotheses about neurochemical mechanisms underlying behavior tolerance to the anticholinesterase diisopropylfluorophosphate. J. Pharmacol. Exp. Ther. 192:7385.
  • Russo-Neustadt, A., Rotter, A., and Frostholm, A. 1991. Distribution of muscarinic receptors in the developing rodent cerebellum. Brain Res. 548:179186.
  • Saelens, J. K., Simke, J. P., Schuman, J., and Allens, M. P. 1974. Agents which influence acetylcholine metabolism in mouse brain. Arch. Int. de Pharmacodyn. Et de Ther. 209:250.
  • Salvaterra, P. M., Mahler, H. R., and Moore, W. J. 1975. Subcellular and regional distribution of 125I-labeled a-Bungarotoxin binding in rat brain and its relationship to acetylcholinesterase and choline acetyltransferase. J. Biol. Chem. 250:6469–6475.
  • Salvaterra, P. M., and Foders, R. M. 1979. [125I]2a-Bungarotoxin and [3H]quinuclidinyl benzilate binding in central nervous system of different species. J. Neurochem. 32:1509–1517.
  • Santhoshkumar, P., Karanth, S., and Shivanandappa, T. 1996. Neurotoxicity and pattern of acetylcholinesterase inhibition in the brain regions of rat by bromophos and ethylbromophos. Fundam. Appl. Toxicol. 32:23–30.
  • Saraste, M. 1999. Oxidative phosphorylation at the fin de siecle. Science. 2831488–1493.
  • Sargent, P. B. 1993. The diversity of neuronal nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 16:403–443.
  • Sarti, P., Lendaro, E., Eppoliti, R., Bellilli, A., Benedetfi, P. A., and Brunori, M. 1999. Modulation of mitochondrial nitric oxide: Investigation by single-cell fluorescence microscopy. FASEB J. 13:191–197.
  • Savolainen, K. M., Nelson, S. R., Samson, F. E., and Pazdernik, T. L. 1988. Soman-induced convulsions affect the inositol lipid signaling system: Potentiation by lithium; attenuation by atropine and diazepam. Toxicol. Appl. Pharmacol. 96:305–314.
  • Savolainen, K. M., Muona, O., Nelson, S. R., Samson, F. E., and Pazdernik, T. L. 1991. Lithium modifies convulsions and brain phosphoinositide turnover induced by organophosphates. Pharmacol. Toxicol. 68:346–354.
  • Sawamura, A., Hashizume, K., and Tanaka, T. 2002. Electrophysiological, behavioral and metabolic features of globus pallidus seizures induced by a microinjection of kainic acid in rats. BrainRes. 935:1–8.
  • Schambra, U. B., Sulik, K. K, Petrusz, P., and Lauder, J. M. 1989. Ontogeny of cholinergic neurons in the mouse brain. J. Comp. Neurol. 288:101–122.
  • Schiller, G. D. (1979) Reduced binding of [3H]quinuclidinyl benzilate associated with chronically low acetylcholinesterase activity. Life Sci. 24:11591164.
  • Schliebs, R., Zivin, M., Steinbach, J., and Rothe, T. 1989. Changes in cholinergic but not in GABAergic markers in amygdala, piriform cortex, and nucleus basalis of the rat brain following systemic administration of kainic acid. J. Neurochem. 53:212–218.
  • Schwab, B. W., Hand, H., Costa, L. G., and Murphy, S. D. 1981. Reduced muscarinic receptor binding in tissues of rats tolerant to the insecticide disulfoton. Neurotoxicology. 2:635–648.
  • Schwartz, R. D., and Keller, K. J. 1983. Nicotinic cholinergic receptor binding sites in the brain: Regulation in vivo. Science. 220:214–216.
  • Schwartz, R. D., and Keller, K. J. 1985. In vivo regulation of 3H-acetylcholine recognition sites in brain by nicotinic cholinergic drug. J. Neurochem. 45:427433.
  • Schwartz, R. D., McGee, R. Jr., and Keller, K. J. 1982. Nicotinic cholinergic receptors labeled by [3H]-acetylcholine in rat brain. Mol. Pharmacol. 22:5662.
  • Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A., and Patrick, J. W. 1993. Molecular cloning, functional properties, and distribution of rat brain a7: A nicotinic cation channel highly permeable to calcium. J. Neurosci. 13:596604.
  • Shafik, E. N., Aiken, S. P., and McArdle, J. J. 1991. Regional catecholamine levels in brains of normal and ethanol-tolerant long-sleep and short-sleep mice. Brain Res. 563:44–48.
  • Shahed, A. R., Werchan, P. M., and Stavinoha, W. B. 1996. Differences in actylcholine but not choline in brain tissue fixed by freeze fixation or microwave heating. Meth. Find. Exp. Clin. Pharmacol. 18:349–351.
  • Shih, T.-M. 1982. Time course effects of soman on acetylcholine and choline levels in six discrete areas of the rat brain. Psychopharmacology. 78:170–175.
  • Simonian, N. A., and Coyle, J. T. 1996. Oxidative stress in neurodegenerative diseases. Ann. Rev. Pharmacol. Toxicol. 36:83–106.
  • Singh, V. K., and McGeer, E. G. 1977. Choline acetyltransferase in developing rat brain and spinal cord. Brain Res. 127:159–163.
  • Singh, H. C., Singh, R. H., and Udapa, K. N. 1979. Electric footshock induced changes in free, bound and total acetylcholine and acetylcholinesterase in different brain regions of rats. Indian J. Exp. Biol. 17:304–306.
  • Sivam, S. P., Norris, J. C., Lim, D. K., Hoskins, B., and Ho, I. K. 1983. Effect of acute and chronic cholinesterae inhibition with diisopropylfluorophosphate on muscarinic, dopamine and GABA receptors of the rat striatum. J. Neurochem. 40:1414–1422.
  • Slotkin, T. A., and Bartolome, J. 1986. Role of ornithine decarboxylase and the polyamines in nervous system development. A review. Brain Res. Bull. 17:307–320.
  • Slotkin, T. A., Cousins, M. M., Tate, C. A., and Seidler, F. J. 2001. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res. 902:229–243.
  • Somani, S. M., and Dube, S. N. 1989. Physostigmine-An overview as pretreatment drug for organophosphate intoxication. Int. J. Clin, Pharmacol. Ther. Toxicol. 27:367–387.
  • Sorimachi, M., and Kataoka, K. 1974. Choline uptake by nerve terminals: A sensitive and a specific marker of cholinergic innervation. Brain Res. 72:350353.
  • Sorimachi, M., and Kataoka, K. 1975. High affinity choline uptake: An early index of cholinergic innervation in rat brain. Brain Res. 94:325–336.
  • Srinivas, V. K., Habibullah, C. M., Ayesha, O., Hassan, S. I., et. al. 1993. Lactate dehydrogenase: A marker of cellular integrity. Meth. Find. Exp. Clin. Pharmacol. 15:709–713.
  • Staniek, K., and Nohl, H. 2000. Are mitochondria a permanent source of reactive oxygen species? Biochim. Biophys. Acta. 1460:268–275.
  • Stanton, H. C., Albert, J. R., and Mersmann, H. J. 1979. Studies on the pharmacology and safety of dichlorvos in pigs and pregnant sows. Am. J. Vet. Res. 40:315–320.
  • Stavinoha, W. B., Ryan, L. C., and Smith, P. W. 1969. Biochemical effects of an organophosphorus cholinesterase inhibitor on the rat brain. Ann. N. Y. Acad. Sci. 160:378–382.
  • Stavinoha, W. B., Weintraub, S. T., and Modak, A. T. 1973. The use of microwave heating to inactivate cholinesterase in the rat brain prior to analysis for acetylcholine. J. Neurochem. 20:361–371.
  • Stavinoha, W. B., Weintraub, S. T., and Modak, A. T. 1974. Regional concentration of choline and acetylcholine in the rat brain. J. Neurochem. 23:885–886.
  • Stavinoha, W. B., Modak, A. T., and Weintraub, S. T. 1976. Rate of accumulation of acetylcholine in discrete regions of the rat brain after dichlorvos treatment. J. Neurochem. 27:1375–1378.
  • Stavinoha, W. B. 1993. Use of microwave for rapid fixation of tissues in vivo. Scanning. 15:115–117.
  • Stavinoha, W. B., Sawa, A., Frazer, J., and Weintraub, S. T. 1997. Acetylcholine: Oscillation of levels in mouse brain following electroshock. Brain Res. Bull. 43:47–52.
  • Sultatos, L. G., Costa, L. G., and Murphy, S. D. 1982. Factors involved in differential toxicity of the insecticides chlorpyrifos and methyl chlorpyrifos in mice. Toxicol. Appl. Pharmacol. 65:144—152.
  • Sung, S. C., and Ruff, B. A. 1983. Molecular forms of sucrose extractable and particulate acetylcholinesterase in the developing and adult rat brain. Neurochem. Res. 8:303–311.
  • Szabo, C. 1996. Physiological and pathological roles of nitric oxide in the central nervous system. BrainRes. Bull. 41:131–141.
  • Tang, J. T., Carr, R. L., and Chambers, J. E. 1999. Changes in brain cholinesterase activity and muscarinic receptor density during and after repeated oral exposure to chlorpyrifos in early postnatal development. Toxicol. Sci. 51:265–272.
  • Tayebati, S. K., Vitali, D., Scordella, S., and Amenta, F. 2001. Muscarinic cholinergic receptors subtypes in rat cerebellar cortex: Light microscope autoradiography of age-related changes. Brain Res. 889:256–259.
  • Tayyaba, K., and Hasan, M. 1985. Vitamin E protects against metasystox-induced adverse effect on lipid metabolism in the rat brain and spinal cord. Acta Pharmacol. Toxicol. 57:190–196.
  • Trimarchi, G. R., and Buccafusco, J. J. 1987. Changes in regional brain synaptosomal high affinity choline uptake during the development of hypertention in spontaneously hypertensive rats. Neurochem. Res. 12:247–254.
  • Trommer, B. A., Schmidt, D. E., and Wecker, L. 1982. Exogenous choline enhances the synthesis of acetylcholine only under conditions of increased cholinergic neuronal activity. J. Neurochem. 39:1704–1709.
  • Turrens, J. F. 1997. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17:3–8.
  • Turunen, M., Swiezewska, E., Chojnacki, T., Sindelar, P., and Dallner, G. 2002. Regulatory aspects of coenzyme Q metabolism. Free Rad. Res. 36:437–443.
  • Van Acker, S. A. B. E., Koymans, L. M. N., Bast, A. 1993. Molecular pharmacology of vitamin E: Structural aspects of antioxidant activity. Free Radic. Biol. Med. 15:311–328.
  • Van De Kamp, J. L., and Collins, A. C. 1992. Species differences in diisopropylfluorophosphate-induced decreases in the number of nicotinic receptors. Pharmacol. Biochem. Behav. 42:131–141.
  • Van Den Beukel, I., Dijcks, F. A., Vanderheyden, P., Vauquelin, G., and Oortgiesen, M. 1997. Differential muscarinic receptor binding of acetyl-cholinesterase inhibitors in rat brain, human brain, and Chinese hamster ovary cells expressing human receptors. J. Pharmacol. Exp. Ther. 281:11131119.
  • Vatassery, G. T., Angerhoffer, C. K., Knox, C. A., and Deshmukh, D. S. 1984. Concentrations of vitamin E in various neuroanatomical regions and subcellular fractions, and the uptake of vitamin E by specific areas, of rat brain. Biochim. Biophys. Acta. 792:118–122.
  • Vernetti, L. A., McDonald, J. R., Wolfgang, G. H. I., Dominick, M. A., et. al. 1993. ATP depletion is associated with cytotoxicity of a novel lipid regulator in guinea pig adrenocortical cells. Toxicol. Appl. Pharmacol. 118:30–38.
  • Virgili, M., Poli, A., Beraudi, A., Giuliani, A., and Villani, L. 2001. Regional distribution of nitric oxide synthase and NADPH-diaphorase activities in the central nervous system of teleosts. Brain Res. 901:202–207.
  • Wada, E., Wada, K., Baulter, J., Deneris, E., Heinemann, S., Patrick, J., and Swanson, L. W. 1989. Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNA in the central nervous system: A hybridization histochemical study in the rat. J. Comp. Neurol. 284:314335.
  • Wade, P. D., and Timiras, P. S. 1980. A regional study of the molecular acetyl-cholinesterase in the brain of developing and adults rats. Dev. Neurosci. 3:101108.
  • Wasterlain, C. G., and Shirasaka, Y. 1994. Seizures, brain damage, and brain development. Brain Dev. 16:279–295.
  • Wecker, L., and Dettbarn, W.-D. 1979. Relationship between choline availability and acetylchoine synthesis in discrete regions of rat brain. J. Neurochem. 32:961–967.
  • Wecker, L., Mobley, P. L., and Dettbarn, W.-D. 1977. Central cholinergic mechanisms underlying adaptation to reduced cholinesterase activity. Biochem.Pharmacol. 26:633–637.
  • Wecker, L., and Schmidt, D. E. 1979. Neuropharmacological consequences of choline administration. BrainRes. 184:234–238.
  • Wecker, L., Flynn, C. J., Stouse, M. R., and Trommer, B. A. 1982. Choline availability: Effects of the toxicity of centrally active drugs. Drug Nutrient Interactions. 1:125–130.
  • Welsch, F., and Dettbarn, W.-D. 1971. Protein synthesis in lobster walking leg nerves. Comp. Biochem. Physiol. B. 38:393–403.
  • Whalley, C. E., and Shih, T.-M. 1989. Effects of soman and sarin on high affinity choline uptake by rat brain synaptosomes. Brain Res. Bull. 22:853–858.
  • Whitehouse, P. J. 1993. Cholinergic therapy in dementia. Acta Neurol. Scand. Suppl. 149:42–45.
  • Whiting, P. J., Schopfer, R., Conroy, W. G., Gore, M. J., Keyser, K. T., Shimasaki, S., Esch, F., and Lindstrom, J. M. 1991. Expression of nicotinic acetylcholine receptor subtypes in brain and retina. Mol. Brain Res. 10:61–70.
  • Whitney, K. D., Seidler, F. J., and Slotkin, T. A. 1995. Developmental neurotoxicity of chlorpyrifos: Cellular mechanisms. Toxicol. Appl. Pharmacol. 134:53–62.
  • Woolf, N. J. 1991. Cholinergic systems in mammalian brain and spinal cord. Progr. Neurobiol. 37:475–524.
  • Wotta, D. R., and El-Fakahany, E. E. 1997. Muscarinic receptor-mediated activation of nitric oxide synthase. Drug Develop. Res. 40:205–214.
  • Wu, A. H. B. 1998. Creatine kinase, isoenzymes, and variants. In Cardiac Markers, ed. A. H. B. Wu, 113-125. Humana Press: Totowa, N.J.
  • Yamada, S. M., Isogai, M., Okadaira, H., and Hayashi, E. 1983a. Correlation between cholinesterase inhibition and reduction in muscarinic receptors and choline uptake by repeated diisopropylfluorophosphate administration antagonism by physostigmine and atropine. J. Pharmacol. Exp. Ther. 226:519–525.
  • Yamada, S. M., Isogai, M., Okadaira, H., and Hayashi, E. 1983b. Regional adaptation of muscarinic receptors and choline uptake in brain following administration of diisopropylfluorophosphate and atropinate. Brain Res. 268:315–320.
  • Yamada, S., Yushiyuka, K., Mitsutaka, I., Takayanagi, N., and Hayashi, E. 1986. Ontogenesis of nicotinic acetylcholine receptors and presynaptic cholinergic neurons in mammalian brain. Life Sci. 38:637–644.
  • Yamanura, H. I., and Snyder, S. H. 1973. High affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21:1355–1374.
  • Yamamura, H. I., and Snyder, S. H. 1974. Muscarinic cholinergic binding in rat brain. Proc. Natl. Acad. Sci. USA. 71:1725–1729.
  • Yavin, E., and Harel, S. 1979. Muscarinic binding sites in the developing rabbit brain, regional distribution and ontogenesis in the prenatal and early neonatal cerebellum. FEBS Lett. 97:151–154.
  • Zhang, X. A., Wahlstrom, G., and Nordberg, A. 1990. Influence of development and aging on nicotinic receptor subtypes in rodent brain. Int. J. Dev. Neurosci. 8:715–721.
  • Zhang, J., Dawson, V. L., Dawson, T. M., and Snyder, S. H. 1994. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science. 263:687689.
  • Zivin, M., Milatovic, D., and Dettbarn, W.-D. 1999a. Nitron spin trapping compound N-tert-butyl-a-phenylnitrone (PBN) prevents seizures induced by anticholinesterases. Brain Res. 850:63–72.
  • Zivin, M., Milatovic, D., and Dettbarn, W.-D. 1999b. The effect of status epilepticus on cytochrome c oxidase activity in the rat brain (Abstract). FASEB J. 13:A1102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.