5,243
Views
114
CrossRef citations to date
0
Altmetric
Review

Hes1: a key role in stemness, metastasis and multidrug resistance

, &
Pages 353-359 | Received 07 Oct 2014, Accepted 03 Feb 2015, Published online: 01 Apr 2015

Reference

  • Fessler E, Dijkgraaf FE, De Sousa E, Melo F, Medema JP. Cancer stem cell dynamics in tumor progression and metastasis: Is the microenvironment to blame?. Cancer Lett 2013; 341(1):97-104; PMID:23089245; http://dx.doi.org/10.1016/j.canlet.2012.10.015
  • Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells—what challenges do they pose?. Nat Rev Drug Disc 2014; 13(7):497-512; PMID:24981363; http://dx.doi.org/10.1038/nrd4253
  • Sang L, Roberts JM, Coller HA. Hijacking HES1: how tumors co-opt the anti-differentiation strategies of quiescent cells. Trends Mol Med 2010; 16(1):17-26; PMID:20022559; http://dx.doi.org/10.1016/j.molmed.2009.11.001
  • Tian C, Zheng G, Cao Z, Li Q, Ju Z, Wang J, Yuan W, Cheng T. Hes1 mediates the different responses of hematopoietic stem and progenitor cells to T cell leukemic environment. Cell Cycle 2013; 12(2):322-31.
  • Sun H, Ghaffari S, Taneja R. bHLH-Orange transcription factors in development and cancer. Translational Oncogenomics 2007; 2:107.
  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R. Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 2005; 306(2):343-8; PMID:15925590; http://dx.doi.org/10.1016/j.yexcr.2005.03.015
  • Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R. Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 1994; 13(8):1799; PMID:7909512
  • Sang L, Coller HA, Roberts JM. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 2008; 321(5892):1095-100; PMID:18719287
  • Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. Control of endodermal endocrine development by Hes-1. Nat Genet 2000; 24(1):36-44; PMID:10615124
  • Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005; 435(7044):964-8; PMID:15959516
  • Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 2007; 134(7):1243-51.
  • Fischer A, Gessler M. Delta–Notch—and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res 2007; 35(14):4583-96; PMID:17586813; http://dx.doi.org/10.1093/nar/gkm477
  • Hirata H, Ohtsuka T, Bessho Y, Kageyama R. Generation of structurally and functionally distinct factors from the basic helix-loop-helix gene Hes3 by alternative first exons. J Biol Chem 2000; 275(25):19083-9; PMID:10858455
  • Jögi A, Persson P, Grynfeld A, Påhlman S, Axelson H. Modulation of basic helix-loop-helix transcription complex formation by Id proteins during neuronal differentiation. J Biol Chem 2002; 277(11):9118-26; PMID:11756408
  • Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194(3):237-55.
  • Davis RL, Turner DL. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 2001; 20(58):8342-57.
  • Paroush Z, Finley RL Jr, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowicz D. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 1994; 79(5):805-15; PMID:8001118
  • Fisher AL, Ohsako S, Caudy M. The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol Cell Biol 1996; 16(6):2670-7.
  • Yao J, Lai E, Stifani S. The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription. Mol Cell Biol 2001; 21(6):1962-72; PMID:11238932; http://dx.doi.org/10.1128/MCB.21.6.1962-1972.2001
  • Takata T, Ishikawa F. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1-and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 2003; 301(1):250-7; PMID:12535671; http://dx.doi.org/10.1016/S0006-291X(02)03020-6
  • Grynfeld A, Påhlman S, Axelson H. Induced neuroblastoma cell differentiation, associated with transient HES-1 activity and reduced HASH-1 expression, is inhibited by Notch1. Int J Cancer 2000; 88(3):401-10.
  • Fang KM, Lin TC, Chan TC, Ma SZ, Tzou BC, Chang WR, Liu JJ, Chiou SH, Yang CS, Tzeng SF. Enhanced cell growth and tumorigenicity of rat glioma cells by stable expression of human CD133 through multiple molecular actions. Glia 2013; 61(9):1402-17; PMID:23832679
  • Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, et al. NOTCH Pathway Blockade Depletes CD133-Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts. Stem Cells 2010; 28(1):5-16; PMID:19904829
  • Cheng JX, Liu BL, Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumors?. Cancer Treat Rev 2009; 35(5):403-8; PMID:19369008; http://dx.doi.org/10.1016/j.ctrv.2009.03.002
  • Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012; 424(1):58-64; PMID:22728043; http://dx.doi.org/10.1016/j.bbrc.2012.06.065
  • Gao F, Zhang YQ, Wang SC, Liu Y, Zheng L, Yang J, Huang W, Ye Y, Luo W, Xiao D. Hes1 is involved in the self-renewal and tumourigenicity of stem-like cancer cells in colon cancer. Sci Rep 2014; 4:3963; PMID:24492635
  • Abel EV, Kim EJ, Wu J, Hynes M, Bednar F, Proctor E, Wang L, Dziubinski ML, Simeone DM. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PloS One 2014; 9(3): e91983; PMID:24647545; http://dx.doi.org/10.1371/journal.pone.0091983
  • Wong NKY, Fuller M, Sung S, Wong F, Karsan A. Heterogeneity of breast cancer stem cells as evidenced with Notch-dependent and Notch-independent populations. Cancer Med 2012; 1(2):105-13; PMID:23342261
  • Nakahara F, Sakata-Yanagimoto M, Komeno Y, Kato N, Uchida T, Haraguchi K, Kumano K, Harada Y, Harada H, Kitaura J, et al. Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood 2010; 115(14):2872-81; PMID:19861684
  • Chen J, Imanaka N, Griffin JD. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer 2010; 102(2):351-60.
  • Danza G, Di Serio C, Rosati F, Lonetto G, Sturli N, Kacer D, Pennella A, Ventimiglia G, Barucci R, Piscazzi A, et al. Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol Cancer Res 2012; 10(2):230-8; PMID:22172337; http://dx.doi.org/10.1158/1541-7786.MCR-11-0296
  • Hu YY, Zheng MH, Cheng G, Li L, Liang L, Gao F, Wei YN, Fu LA, Han H. Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer 2011; 11(1):82; PMID:21342503
  • Ball DW. Achaete–scute homolog-1 and Notch in lung neuroendocrine development and cancer. Cancer Lett 2004; 204(2):159-69.
  • Zayzafoon M, Abdulkadir SA, McDonald JM. The role of Notch signaling in the osteomimetic properties of prostate cancer bone metastases. Proc Am Assoc Cancer Res 2004; 2004(1):789
  • Mu X, Isaac C, Greco N, Huard J, Weiss K. Notch signaling is associated with ALDH activity and an aggressive metastatic phenotype in murine osteosarcoma cells. Front Oncol 2013; 3:143; PMID:23805413; http://dx.doi.org/10.3389/fonc.2013.00143
  • Dailey DD, Anfinsen KP, Pfaff LE, Ehrhart EJ, Charles JB, Bønsdorff TB, Thamm DH, Powers BE, Jonasdottir TJ, Duval DL. HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors. BMC Vet Res 2013; 9(1):130; PMID:23816051; http://dx.doi.org/10.1186/1746-6148-9-130
  • Hughes DPM. How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Pediatric and Adolescent Osteosarcoma. USA: Springer, 2010:479-96.
  • Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP. Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 2008; 14(10):2962-9; PMID:18483362; http://dx.doi.org/10.1158/1078-0432.CCR-07-1992
  • Zhang P, Yang Y, Nolo R, Zweidler-McKay PA, Hughes DP. Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness. Oncogene 2010; 29(20):2916-26; PMID:20208568; http://dx.doi.org/10.1038/onc.2010.62
  • Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metast Rev 2006; 25(4):589-600; PMID:17165130; http://dx.doi.org/10.1007/s10555-006-9032-0
  • McLarren KW, Lo R, Grbavec D, Thirunavukkarasu K, Karsenty G, Stifani. The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J Biol Chem 2000; 275(1):530-8; PMID:10617648
  • Lee JS, Thomas DM, Gutierrez G, Carty SA, Yanagawa S, Hinds PW. HES1 cooperates with pRb to activate RUNX2-dependent transcription. J Bone Mineral Res 2006; 21(6):921-33; PMID:16753023; http://dx.doi.org/10.1359/jbmr.060303
  • Suh JH, Lee HW, Lee JW, Kim JB. Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochem Biophys Res Commun 2008; 367(1):97-102; PMID:18162173; http://dx.doi.org/10.1016/j.bbrc.2007.12.100
  • Zayzafoon M, Abdulkadir SA, McDonald JM. Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem 2004; 279(5):3662-70.
  • Geiger TR, Peeper DS. Metastasis mechanisms. Biochimica et Biophysica Acta (BBA)-Rev Cancer 2009; 1796(2):293-308; PMID:19683560; http://dx.doi.org/10.1016/j.bbcan.2009.07.006
  • Kong D, Li Y, Wang Z, Sarkar FH. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 2011; 3(1):716-29; PMID:21643534; http://dx.doi.org/10.3390/cancers30100716
  • Zhang X, Chen T, Zhang J, Mao Q, Li S, Xiong W, Qiu Y, Xie Q, Ge J. Notch1 promotes glioma cell migration and invasion by stimulating β-catenin and NF-КB signaling via AKT activation. Cancer Sci 2012; 103(2):181-90; PMID:22093097; http://dx.doi.org/10.1111/j.1349-7006.2011.02154.x
  • Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13(10):1203-10; PMID:17873882
  • Liu ZJ, Xiao M, Balint K, Soma A, Pinnix CC, Capobianco AJ, Velazquez OC, Herlyn M. Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J 2006; 20(7):1009-11; PMID:16571776
  • Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle-Landes Biosci- 2008; 7(8):965
  • Liu S, Ma X, Ai Q, Huang Q, Shi T, Zhu M, Wang B, Zhang X. NOTCH1 functions as an oncogene by regulating the PTEN/PI3K/AKT pathway in clear cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations. Elsevier 2013; 31(6):938-48; PMID:21993533
  • Sumual S, Saad S, Tang O, Yong R, McGinn S, Chen XM, Pollock CA. Differential regulation of Snail by hypoxia and hyperglycemia in human proximal tubule cells. Int J Biochem Cell Biol 2010; 42(10):1689-97; PMID:20620220; http://dx.doi.org/10.1016/j.biocel.2010.06.023
  • Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011:313-9; PMID:21386835; http://dx.doi.org/10.1038/nm.2304
  • Holohan C, Van Schaeybroeck S, Longley D B, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13(10):714-26; PMID:24060863; http://dx.doi.org/10.1038/nrc3599
  • Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI. Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 2008; 111(4):2220-9; PMID:18039953
  • Marfels C, Hoehn M, Wagner E, Günther M. Characterization of in vivo chemoresistant human hepatocellular carcinoma cells with transendothelial differentiation capacities. BMC cancer 2013; 13(1):176; PMID:23547746
  • Gu F, Ma Y, Zhang Z, Zhao J, Kobayashi H, Zhang L, Fu L. Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep 2010; 23(3):671-6; PMID:20127005
  • Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y. Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nat Cell Biol 2004; 6(6):547-54; PMID:15156153; http://dx.doi.org/10.1038/ncb1138
  • Lee JH, Suk J, Park J, Kim SB, Kwak SS, Kim JW, Lee CH, Byun B, Ahn JK, Joe CO. Notch signal activates hypoxia pathway through HES1-dependent SRC/signal transducers and activators of transcription 3 pathway. Mol Cancer Res 2009; 7(10):1663-71; PMID:19808903; http://dx.doi.org/10.1158/1541-7786.MCR-09-0191
  • Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011:313-9; PMID:21386835; http://dx.doi.org/10.1038/nm.2304
  • Almog N. Molecular mechanisms underlying tumor dormancy. Cancer Lett 2010; 294(2):139-46; PMID:20363069; http://dx.doi.org/10.1016/j.canlet.2010.03.004
  • Ruppender NS, Morrissey C, Lange PH, Vessella RL. Dormancy in solid tumors: implications for prostate cancer. Cancer Metast Rev 2013; 32(3-4):501-9; PMID:23612741; http://dx.doi.org/10.1007/s10555-013-9422-z
  • Kusumbe AP, Bapat SA. Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 2009; 69(24):9245-53.
  • Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI. Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004; 103(9):3503-10; PMID:14670925
  • Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB, Ball DW. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 2001; 61(7):3200-5; PMID:11306509
  • Cui H, Kong Y, Xu M, Zhang H. Notch3 functions as a tumor suppressor by controlling cellular senescence. Cancer Res 2013; 73(11):3451-9; PMID:23610446
  • Castella P, Sawai S, Nakao K, Wagner JA, Caudy M. HES-1 repression of differentiation and proliferation in PC12 cells: role for the helix 3-helix 4 domain in transcription repression. Mol Cell Biol 2000; 20(16):6170-83; PMID:10913198; http://dx.doi.org/10.1128/MCB.20.16.6170-6183.2000
  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 1999; 18(8):2196-07; PMID:10205173
  • Rooman I, De Medts N, Baeyens L, Lardon J, De Breuck S, Heimberg H, Bouwens L. Expression of the Notch signaling pathway and effect on exocrine cell proliferation in adult rat pancreas. Am J Pathol 2006; 169(4):1206-14; PMID:17003479
  • Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008; 14(3):306-14; PMID:18297083
  • Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 2012; 30(2):243-52; PMID:22069237
  • Chen J, Kesari S, Rooney C, Strack PR, Chen J, Shen H, Wu L, Griffin JD. Inhibition of notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes & Cancer 2010; 1(8):822-35; PMID:21127729
  • Grudzien P, Lo S, Albain KS, Robinson P, Rajan P, Strack PR, Golde TE, Miele L, Foreman KE. Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res 2010; 30(10):3853-67; PMID:21036696
  • Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia (New York, NY) 2006; 8(12):1072; PMID:17217625; http://dx.doi.org/10.1593/neo.06526
  • Espinosa L, Inglés-Esteve J, Aguilera C, Bigas A. Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 2003; 278(34):32227-35; PMID:12794074
  • Jin YH, Kim H, Ki H, Yang I, Yang N, Lee KY, Kim N, Park HS, Kim K. Beta-catenin modulates the level and transcriptional activity of Notch1/NICD through its direct interaction. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 2009; 1793(2):290-9; PMID:19000719; http://dx.doi.org/10.1016/j.bbamcr.2008.10.002
  • Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, Taga T. Stabilized β-catenin functions through TCF/LEF proteins and the Notch/RBP-JК complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol 2008; 28(24):7427-41; PMID:18852283; http://dx.doi.org/10.1128/MCB.01962-07
  • Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5):617-28; PMID:16256737
  • Danza G, Di Serio C, Rosati F, Lonetto G, Sturli N, Kacer D, Pennella A, Ventimiglia G, Barucci R, Piscazzi A, et al. Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol Cancer Res 2012; 10(2):230-8; PMID:22172337; http://dx.doi.org/10.1158/1541-7786.MCR-11-0296
  • Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ, Zhao L, Chen FH, Wang XT, You QD, et al. HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ 2012; 19(2):284-94; PMID:21818118; http://dx.doi.org/10.1038/cdd.2011.95
  • Pistollato F, Rampazzo E, Persano L, Abbadi S, Frasson C, Denaro L, D'Avella D, Panchision DM, Della Puppa A, Scienza R, et al. Interaction of hypoxia-inducible factor-1α and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 2010; 28(11):1918-29; PMID:20827750; http://dx.doi.org/10.1002/stem.518
  • Veeraraghavalu K, Subbaiah VK, Srivastava S, Chakrabarti O, Syal R, Krishna S. Complementation of human papillomavirus type 16 E6 and E7 by Jagged1-specific Notch1-phosphatidylinositol 3-kinase signaling involves pleiotropic oncogenic functions independent of CBF1; Su (H); Lag-1 activation. J Virol 2005; 79(12):7889-98; PMID:15919944; http://dx.doi.org/10.1128/JVI.79.12.7889-7898.2005
  • Nofziger D, Miyamoto A, Lyons KM, Weinmaster G. Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 1999; 126(8):1689-702; PMID:10079231
  • Dave RK, Ellis T, Toumpas MC, Robson JP, Julian E, Adolphe C, Bartlett PF, Cooper HM, Reynolds BA, Wainwright BJ. Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors. PloS One 2011; 6(2): e14680; PMID:21379383
  • Ingram WJ, McCue KI, Tran TH, Hallahan AR, Wainwright BJ. Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene 2007; 27(10):1489-500; PMID:17873912
  • Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol 2009; 184(1):101-12; PMID:19124651; http://dx.doi.org/10.1083/jcb.200805155
  • Takanaga H, Tsuchida-Straeten N, Nishide K, Watanabe A, Aburatani H, Kondo T. Gli2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells. Stem Cells 2009; 27(1):165-74; PMID:18927476; http://dx.doi.org/10.1634/stemcells.2008-0580
  • Stecca B, Ruiz i Altaba A. A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 2009; 28(6):663-76; PMID:19214186; http://dx.doi.org/10.1038/emboj.2009.16
  • Julian E, Dave RK, Robson JP, Hallahan AR, Wainwright BJ. Canonical Notch signaling is not required for the growth of Hedgehog pathway-induced medulloblastoma. Oncogene 2010; 29(24):3465-76; PMID:20418906; http://dx.doi.org/10.1038/onc.2010.101
  • Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, Eberhart CG. The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 2010; 16(24):6060-70; PMID:21169257; http://dx.doi.org/10.1158/1078-0432.CCR-10-1624
  • Sanalkumar R, Indulekha CL, Divya TS, Divya MS, Anto RJ, Vinod B, Vidyanand S, Jagatha B, Venugopal S, James J. ATF2 maintains a subset of neural progenitors through CBF1/Notch independent Hes-1 expression and synergistically activates the expression of Hes-1 in Notch-dependent neural progenitors. J Neurochem 2010; 113(4):807-18; PMID:20067572
  • Stockhausen MT, Sjölund J, Axelson H. Regulation of the Notch target gene Hes-1 by TGFα induced Ras/MAPK signaling in human neuroblastoma cells. Exp Cell Res 2005; 310(1):218-28; PMID:16120441; http://dx.doi.org/10.1016/j.yexcr.2005.07.011
  • Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS. Inhibition of sonic hedgehog and notch pathways enhances sensitivity of cd133+ glioma stem cells to temozolomide therapy. Mol Med 2011; 17(1-2):103; PMID:20957337
  • Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Therap 2014; 141(2):140-9; PMID:24076266; http://dx.doi.org/10.1016/j.pharmthera.2013.09.005
  • van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005; 435(7044):959-63; PMID:15959515

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.