2,009
Views
24
CrossRef citations to date
0
Altmetric
Research Paper

IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition

, , , , &
Pages 1029-1041 | Received 09 May 2014, Accepted 23 Apr 2015, Published online: 06 Jul 2015

References

  • Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, Miyata T, Taniguchi T. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-B gene regulatory elements. Cell 1988; 54:903-13; PMID:3409321; http://dx.doi.org/10.1016/S0092-8674(88)91307-4
  • Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19:623-55; PMID:11244049; http://dx.doi.org/10.1146/annurev.immunol.19.1.623
  • Percario ZA, Giandomenico V, Fiorucci G, Chiantore MV, Vannucchi S, Hiscott J, Affabris E, Romeo G. Retinoic acid is able to induce interferon regulatory factor 1 in squamous carcinoma cells via a STAT-1 independent signalling pathway. Cell Growth Differ 1999; 10:263-70; PMID:10319996
  • Arany I, Ember, IA, Tyring SK. All-trans-retinoic acid activates caspase-1 in a dose-dependent manner in cervical squamous carcinoma cells. Anticancer Res 2003; 23:471-73; PMID:12680251
  • Bowie ML, Dietze EC, Delrow J, Bean GR, Troch MM, Marjoram RJ, Seewaldt VL. Interferon-regulatory factor-1 is critical for tamoxifen-mediated apoptosis in human mammary epithelial cells. Oncogene 2004; 23:8743-55; PMID:15467738; http://dx.doi.org/10.1038/sj.onc.1208120
  • Bouker KB, Skaar TC, Fernandez DR, O'Brien KA, Riggins RB, Cao D, Clarke R. Interferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182,780 (Faslodex, Fulvestrant). Cancer Res 2004; 64:4030-39; PMID:15173018; http://dx.doi.org/10.1158/0008-5472.CAN-03-3602
  • Hoshiya Y, Gupta V, Kawakubo H, Brachtel E, Carey JL, Sasur L, Scott A, Donahue PK, Maheswaran S. Mullerian inhibiting substance promotes interferon g-induced gene expression and apoptosis in breast cancer cells. J Biol Chem 2003; 278:51703-12; PMID:14532292; http://dx.doi.org/10.1074/jbc.M307626200
  • Burke F, Smith PD, Crompton MR, Upton C, Balkwill FR. Cytotoxic response of ovarian cancer cell lines to IFN-g is associated with sustained induction of IRF-1 and p21 mRNA. Br J Cancer 1999; 80:1236-44; PMID:10376977; http://dx.doi.org/10.1038/sj.bjc.6690491
  • Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S. Interferon g inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut 2001; 49:251-62; PMID:11454803; http://dx.doi.org/10.1136/gut.49.2.251
  • Jiang MC, Lin TL, Lee TL, Huang HT, Lin CL, Liao CF. IRF-1 Mediated CAS Expression Enhances Interferon-g-Induced Apoptosis of HT-29 Colon Adenocarcinoma Cells. Mol Cell Biol Res Commun 2001; 4:353-58; PMID:11703094; http://dx.doi.org/10.1006/mcbr.2001.0303
  • Kim EJ, Lee JM, Namkoong SE, Um SJ, Park JS. Interferon regulatory factor-1 mediates interferon-gamma-induced apoptosis in ovarian carcinoma cells. J Cell Biochem 2002; 85:369-80; PMID:11948692; http://dx.doi.org/10.1002/jcb.10142
  • Sers C, Husmann K, Nazarenko I, Reich S, Wiechen K, Zhumabayeva B, Adhikari P, Schroder K, Gontarewicz A, Schafer R. The class II tumour suppressor gene H-REV107-1 is a target of interferon-regulatory factor-1 and is involved in IFNg-induced cell death in human ovarian carcinoma cells. Oncogene 2002; 21:2829-39; PMID:11973642; http://dx.doi.org/10.1038/sj.onc.1205377
  • Detjen KM, Kehrberger JP, Drost A, Rabien A, Welzel M, Wiedenmann, B, Rosewicz S. Interferon-g inhibits growth of human neuroendocrine carcinoma cells via induction of apoptosis. Int J Oncol 2002; 21:1133-40; PMID:12370765; http://dx.doi.org/10.3892/ijo.21.5.1133
  • Ruiz-Ruiz C, Ruiz de Almodóvar C, Rodriguez A, Ortiz-Ferrón G, Redondo JM, López-Rivas A. The upregulation of human caspase-8 by interferon-g in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1. J Biol Chem 2004; 279:19712-20; PMID:14993214; http://dx.doi.org/10.1074/jbc.M313023200
  • Egwuagu CE, Li W, Yu CR, Che Mei Lin M, Chan CC, Nakamura T, Chepelinsky AB. Interferon-g induces regression of epithelial cell carcinoma:critical roles of IRF-1 and ICSBP transcription factors. Oncogene 2006; 25:3670-79; PMID:16462767; http://dx.doi.org/10.1038/sj.onc.1209402
  • Doherty GM, Boucher L, Sorenson K, Lowney J. Interferon regulatory factor expression in human breast cancer. Ann Surg 2001; 233:623-29; PMID:11323500; http://dx.doi.org/10.1097/00000658-200105000-00005
  • Connett JM, Badri L, Giordano TJ, Connett WC, Doherty GM. Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays. J Interferon Cytokine Res 2005; 25:587-94; PMID:16241857; http://dx.doi.org/10.1089/jir.2005.25.587
  • Zhu Y, Singh B, Hewitt S, Liu A, Gomez B, Wang A, Clarke R. Expression patterns among interferon regulatory factor-1, human X-box binding protein-1, nuclear factor kappa B, nucleophosmin, estrogen receptor-alpha and progesterone receptor proteins in breast cancer tissue microarrays. Int J Oncol 2006; 28:67-76; PMID:16327981; http://dx.doi.org/10.3892/ijo.28.1.67
  • Cavalli LR, Riggins RB, Wang A, Clarke R, Haddad BR. Frequent loss of heterozygosity at the interferon regulatory factor-1 gene locus in breast cancer. Breast Cancer Res Treat 2010; 121:227-31; PMID:19697121; http://dx.doi.org/10.1007/s10549-009-0509-8
  • Tanaka N, Ishihara M, Taniguchi T. Suppression of c-myc or fosB-induced cell transformation by the transcription factor IRF-1. Cancer Lett 1994; 83:191-96; PMID:8062214; http://dx.doi.org/10.1016/0304-3835(94)90318-2
  • Kröger A, Dallügge A, Kirchhoff S, Hauser H. IRF-1 reverts the transformed phenotype of oncogenically transformed cells in vitro and in vivo. Oncogene 2003; 22:1045-56; PMID:12592391; http://dx.doi.org/10.1038/sj.onc.1206260
  • Kim PKM, Armstrong MJ, Liu Y, Yan P, Bucher B, Zuckerbraun BS, Gambotto A, Billiar TR, Yim JH. IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. Oncogene 2004; 23:1125-35; PMID:14762441; http://dx.doi.org/10.1038/sj.onc.1207023
  • Eckert M, Meek SE, Ball KL. A novel repressor domain is required for maximal growth inhibition by the IRF-1 tumor suppressor. J Biol Chem 2006; 281:23092-102; PMID:16679314; http://dx.doi.org/10.1074/jbc.M512589200
  • Pizzoferrato E, Liu Y, Gambotto A, Armstrong MJ, Stang MT, Gooding WE, Alber SM, Shand SH, Watkins SC, Storkus WJ, et al. Ectopic expression of interferon regulatory factor-1 promotes human breast cancer cell death and results in reduced expression of survivin. Cancer Res 2004; 64:8381-88; PMID:15548708; http://dx.doi.org/10.1158/0008-5472.CAN-04-2223
  • Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart A, Wang A, Clarke R. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis 2005; 26:1527-35; PMID:15878912; http://dx.doi.org/10.1093/carcin/bgi113
  • Watson GA, Queiroz de Oliveira PE, Stang MT, Armstrong MT, Gooding WE, Kuan SF, Yim JH, Hughes SJ. Ad-IRF-1 induces apoptosis in esophageal adenocarcinoma. Neoplasia 2006; 8:31-37; PMID:16533423; http://dx.doi.org/10.1593/neo.05559
  • Tomita Y, Bilim V, Hara N, Kasahara T, Takahashi K. Role of IRF-1 and caspase-7 in IFN-g enhancement of fas-mediated apoptosis in ACHN renal cell carcinoma cells. Int J Cancer 2003; 104:400-08; PMID:12584735; http://dx.doi.org/10.1002/ijc.10956
  • Suk K, Chang I, Kim YH, Kim S, Kim JY, Kim H, Lee MS. Interferon g (IFNg) and tumor necrosis factor-a synergism in ME-180 cervical cancer cell apoptosis and necrosis. IFNg inhibits cytoprotective NF-kB through STAT1/IRF-1 pathways. J Biol Chem 2001; 276:13153-59; PMID:11278357; http://dx.doi.org/10.1074/jbc.M007646200
  • Papageorgiou A, Dinney CP, McConkey DJ. Interferon-a induces trail expression and cell death via an IRF-1-dependent mechanism in human bladder cancer cells. Cancer Biol Ther 2007; 6:872-78; PMID:17617740; http://dx.doi.org/10.4161/cbt.6.6.4088
  • Park SY, Seol JW, Lee YJ, Cho JH, Kang HS, Kim IS, Park SH, Kim TH, Yim JH, Kim M, et al. IFN-g enhances TRAIL-induced apoptosis through IRF-1. Eur J Biochem 2004; 271:4222-28; PMID:15511228; http://dx.doi.org/10.1111/j.1432-1033.2004.04362.x
  • Clarke N, Jimenez-Lara AM, Voltz E, Gronemeyer H. Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J 2004; 23:3051-60; PMID:15241475; http://dx.doi.org/10.1038/sj.emboj.7600302
  • Stang MT, Armstrong MJ, Watson GA, Sung KY, Liu Y, Ren B, Yim JH. Interferon regulatory factor-1-induced apoptosis mediated by a ligand-independent fas-associated death domain pathway in breast cancer cells. Oncogene 2007; 26:6420-30; PMID:17452973; http://dx.doi.org/10.1038/sj.onc.1210470
  • Armstrong MJ, Stang MT, Liu Y, Gao J, Ren B, Zuckerbraun BS, Mahidhara RS, Pizzoferrato E, Yim JH. Interferon regulatory factor 1 (IRF-1) induces p21 WAF1/CIP1 dependent cell cycle arrest and p21 WAF1/CIP1 independent modulation of survivin in cancer cells. Cancer Lett 2012; 319:56-65; PMID:22200613; http://dx.doi.org/10.1016/j.canlet.2011.12.027
  • Neish AS, Read MA, Thanos D, Pine R, Maniatis T, Collins T. Endothelial interferon regulatory factor 1 cooperates with NF-kB as a transcriptional activator of vascular cell adhesion molecule 1. Mol Cell Biol 1995; 15:2558-69; PMID:7537851
  • Drew PD, Franzoso G, Becker KG, Bours V, Carlson LM, Siebenlist U, Ozato K. NF kappaB and interferon regulatory factor 1 physically interact and synergistically induce major histocompatibility classI gene expression. J Interferon Cytokine Res 1995; 15:1037-45; PMID:8746784
  • Saura M, Zaragoza C, Bao C, McMillan A, Lowenstein CJ. Interaction of interferon regulatory factor 1 and nuclear factor kappaB during activation of inducible nitric oxide synthase transcription. J Mol Biol 1999; 289:459-71; PMID:10356322; http://dx.doi.org/10.1006/jmbi.1999.2752
  • Yu-Lee LY. Prolactin modulation of immune and inflammatory responses. Recent Prog Horm Res 2002; 57:435-55; PMID:12017556; http://dx.doi.org/10.1210/rp.57.1.435
  • Ma HH, Ziegler J, Li C, Sepulveda A, Bedeir A, Grandis J, Lentzsch S, Mapara MY. Sequential activation of inflammatory signaling pathways during graft-versus-host disease (GVHD): early role for STAT1 and STAT3. Cell Immunol 2011; 268:37-46; PMID:21376308; http://dx.doi.org/10.1016/j.cellimm.2011.01.008
  • Marotte H, Tsou PS, Rabquer BJ, Pinney AJ, Fedorova T, Lalwani N, Koch AE. Blocking of interferon regulatory factor 1 reduces tumor necrosis factor a-induced interleukin-18 bioactivity in rheumatoid arthritis synovial fibroblasts by induction of interleukin-18 binding protein a: role of the nuclear interferon regulatory factor 1-NF-kB-c-jun complex. Arthritis Rheum 2011; 63:3253-62; PMID:21834067; http://dx.doi.org/10.1002/art.30583
  • Giandomenico V, Lancillotti F, Fiorucci G, Percario ZA, Rivabene R, Malorni W, Affabris E, Romeo G. Retinoic acid and IFN inhibition of cell proliferation is associated with apoptosis in squamous carcinoma cell lines: role of IRF-1 and TGase II-dependent pathways. Cell Growth Differ 1997; 8:91-100; PMID:8993838
  • Percario ZA, Giandomenico V, Fiorucci G, Chiantore MV, Vannucchi S, Hiscott J, Affabris E, Romeo G. Retinoic acid is able to induce interferon regulatory factor 1 in squamous carcinoma cells via a STAT-1 independent signalling pathway. Cell Growth Differ 1999; 10:263-70; PMID:10319996
  • Biswas DK, Dai SC, Cruz A, Weiser B, Graner E, Pardee AB. The nuclear factor kappa B (NF-kappaB): a potential therapeutic target for estrogen receptor negative breast cancer. PNAS 2001; 98:10386-91; PMID:11517301; http://dx.doi.org/10.1073/pnas.151257998
  • Singh S, Shi Q, Bailey ST, Palczewski MJ, Pardee AB, Iglehart JD, Biswas DK. Nuclear factor-kappa B activation: a molecular therapeutic target for estrogen receptor-negative and epidermal growth factor receptor family receptor-positive human breast cancer. Mol Cancer Ther 2007; 6:1973-82; PMID:17620428; http://dx.doi.org/10.1158/1535-7163.MCT-07-0063
  • Hayden MS, Ghosh S. NF-kappaB, the first quarter century: remarkable progress and outstanding questions. Genes Dev 2012; 26:203-34; PMID:22302935; http://dx.doi.org/10.1101/gad.183434.111
  • Perkins ND. The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 2012; 12:121-32; PMID:22257950; http://dx.doi.org/10.1038/nrc3204
  • Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18:6853-66; PMID:10602461; http://dx.doi.org/10.1038/sj.onc.1203239
  • Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-kB Activation by Small Molecules As a Therapeutic Strategy. Biochem Biophys Acta 2010; 1799:775-87; PMID:20493977; http://dx/doi.org/10.1016/j.bbagrm.2010.05.004
  • Chapman RS, Duff EK, Lourenco PC, Tonner E, Flint DJ, Clarke AR, Watson CJ. A novel role for IRF-1 as a suppressor of apoptosis. Oncogene 2000; 19:6386-91; PMID:11175354; http://dx.doi.org/10.1038/sj.onc.1204016
  • Rayet B, Gélinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999; 18:6938-47; PMID:10602468; http://dx.doi.org/10.1038/sj.onc.1203221
  • Reuther JY, Reuther GW, Cortez G, Pendergast AM, Baldwin AS Jr. A requirement for NF-kB activation in Bcr-Abl-mediated transformation. Genes Dev 1998; 12:968-81; PMID:9531535; http://dx.doi.org/10.1101/gad.12.7.968
  • Sun SC, Ballard DW. Persistent activation of NF-kB by the Tax transforming protein of HTLV-1:hijacking cellular IkB kinases. Oncogene 1999; 18:6948-58; PMID:10602469; http://dx.doi.org/10.1038/sj.onc.1203220
  • Dejardin E, Deregowski V, Chapelier M, Jacobs N, Gielen J, Merville MP, Bours V. Regulation of NK-kB activity by IkB-related proteins in adenocarcinoma cells. Oncogene 1999; 18:2567-77; PMID:10353600; http://dx.doi.org/10.1038/sj.onc.1202599
  • Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr. Constitutive activation of NF-kB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 1997; 17:3629-39; PMID:9199297
  • Sovak M, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE. Aberrant nuclear factor-kB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 1997; 100:2952-60; PMID:9399940; http://dx.doi.org/10.1172/JCI119848
  • Bours V, Dejardin E, Goujon-Letawe F, Merville MP, Castronovo V. The NF-kB transcription factor and cancer:high expression of NF-kB and IkB-related proteins in tumor cell lines. Biochem Phamacol 1994; 47:145-49; PMID:8311838; http://dx.doi.org/10.1016/0006-2952(94)90448-0
  • Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-kB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 1999; 5:119-27; PMID:9918209
  • Visconti R, Cerutti J, Battista S, Fedele M, Trapasso F, Zeki K, Miano MP, de Nigris F, Casalino L, Curcio F, et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkB p65 protein expression. Oncogene 1997; 15:1987-94; PMID:9365245; http://dx.doi.org/10.1038/sj.onc.1201373
  • Sumitomo M, Tachibana M, Ozu C, Asakura H, Murai M, Hayakawa M, Nakamura H, Takayanagi A, Shimizu N. Induction of apoptosis of cytokine-producing bladder cancer cells by adenovirus-mediated IkBa overexpression. Hum Gene Ther 1999; 10:37-47; PMID:10022529; http://dx.doi.org/10.1089/10430349950019174
  • Herrmann JL, Beham AW, Sarkiss M, Chiao PJ, Todds-Rands M, Bruckheimer EM, Brisbay S, McDonnell TJ. Bcl-2 suppresses apoptosis resulting from disruption of the NF-kB survival pathway. Exp Cell Res 1997; 237:101-9; PMID:9417872; http://dx.doi.org/10.1006/excr.1997.3737
  • Sumitomo M, Tachibana M, Nakashima J, Murai M, Miyajima A, Kimura F, Hayakawa M, Nakamura H. An essential role for NF-kB in preventing TNF-a-induced cell death in prostate cancer cells. J Urol 1999; 161:674-79; PMID:9915481; http://dx.doi.org/10.1016/S0022-5347(01)61993-1
  • Ning Y, Riggins RB, Mulla JE, Chung H, Zwart A, Clarke R. IFNg restores breast cancer sensitivity to fulvestrant by regulating STAT1, IFN regulatory factor 1, NF-kB, Bcl2 family Members, and signaling to caspase-dependent apoptosis. Mol Cancer Ther 2010; 9:1274-85; PMID:20457620; http://dx.doi.org/10.1158/1535-7163.MCT-09-1169
  • Scheidereit C. IkB kinase complexes: gateways to NF-kB activation and transcription. Oncogene 2006; 25:6685-705; PMID:17072322; http://dx.doi.org/10.1038/sj.onc.1209934
  • Hayden MS, Ghosh S. Shared principles in NF-kB signaling. Cell 2008; 132:344-62; PMID:18267068; http://dx.doi.org/10.1016/j.cell.2008.01.020
  • Sun S. Non-canonical NF-kB signaling pathway. Cell Res 2011; 21:71-85; PMID:21173796; http://dx.doi.org/10.1038/cr.2010.177
  • Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kB pathway. FEBS J 2011; 278:862-76; PMID:21232017; http://dx.doi.org/10.1111/j.1742-4658.2011.08015.x
  • Micheau O, Tschopp J. Induction of TNF receptor 1-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114:181-90; PMID:12887920; http://dx.doi.org/10.1016/S0092-8674(03)00521-X
  • Scaffidi C, Kirchhoff S, Krammer PH, Peter ME. Apoptosis signaling in lymphocytes. Curr Opin Immunol 1999; 11:277-85; PMID:10375553; http://dx.doi.org/10.1016/S0952-7915(99)80045-4
  • Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. Structural basis of caspase inhibition by XIAP:Differential roles of the linker versus the BIR domain. Cell 2001; 104:781-90; PMID:11257231
  • Jin HS, Lee DH, Kim DH, Chung JH, Lee SJ, Lee TH. cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate genotoxic stress-induced nuclear factor-kB activation. Cancer Res 2009; 69:1782-91; PMID:19223549; http://dx.doi.org/10.1158/0008-5472.CAN-08-2256; http://dx.doi.og/10.1016/S0092-8674(01)00273-2
  • Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274:10689-92; PMID:10196138; http://dx.doi.org/10.1074/jbc.274.16.10689

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.