1,124
Views
13
CrossRef citations to date
0
Altmetric
Research Paper

Dehydroepiandrosterone inhibits events related with the metastatic process in breast tumor cell lines

, , , , , , , , & show all
Pages 915-924 | Received 24 Feb 2016, Accepted 22 May 2016, Published online: 25 Aug 2016

References

  • Watson RR, Huls A, Araghinikuam M, Chung S. Dehydroepiandrosterone and diseases of aging. Drugs Aging 1996; 9:274-91; PMID:8894525; http://dx.doi.org/10.2165/00002512-199609040-00005
  • Tchernof A, Labrie F. Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies. Eur J Endocrinol 2004; 151:1-14; PMID:15248817; http://dx.doi.org/10.1530/eje.0.1510001
  • Gutiérrez G, Mendoza C, Zapata E, Montiel A, Reyes E, Montaño LF, López-Marure R. Dehydroepiandrosterone inhibits the TNF-α-induced inflammatory response in human umbilical vein endothelial cells. Atherosclerosis 2007; 190:90-9; PMID:16574124; http://dx.doi.org/10.1016/j.atherosclerosis.2006.02.031
  • Wang L, Hao Q, Wang YD, Wang WJ, Li DJ. Protective effects of dehydroepiandrosterone on atherosclerosis in ovariectomized rabbits via alleviating inflammatory injury in endothelial cells. Atherosclerosis 2011; 214:47-57; PMID:21071029; http://dx.doi.org/10.1016/j.atherosclerosis.2010.07.043
  • Schwartz AG, Pashko L, Whitcomb JM. Inhibition of tumor development by dehydroepiandrosterone and related steroids. Toxicol Pathol 1986; 14:357-62; PMID:3024302; http://dx.doi.org/10.1177/019262338601400312
  • Gayosso V, Montano LF, López-Marure R. DHEA-induced antiproliferative effect in MCF-7 cells is androgen- and estrogen receptor-independent. Cancer J 2006; 12:160-5; PMID:16630408
  • López-Marure R, Contreras PG, Dillon JS. Effects of dehydroepiandrosterone on proliferation, migration, and death of breast cancer cells. Eur J Pharmacol 2011; 660:268-74; PMID:21497598; http://dx.doi.org/10.1016/j.ejphar.2011.03.040
  • Ortega-Calderón YN, López-Marure R. Dehydroepiandrosterone inhibits proliferation and suppresses migration of human cervical cancer cell lines. Anticancer Res 2014; 34:4039-44; PMID:25075027
  • Knaul FM, Nigenda G, Lozano R, Arreola-Ornelas H, Langer A, Frenk J. Breast cancer in México: an urgent priority. Salud Publica Mex 2009; 51(2):s335-44; PMID:19967291; http://dx.doi.org/10.1590/S0036-36342009000800026
  • Klevesath MB, Pantel K, Agbaje O, Provenzano E, Wishart GC, Gough P, Pinder SE, Duffy S, Purushotham AD. Patterns of metastatic spread in early breast cancer. Breast 2013; 22:449-54; PMID:23726130; http://dx.doi.org/10.1016/j.breast.2013.04.017
  • Talmadge JE, Fidler IJ. AACR centennial series: The biology of cancer metastasis: historical perspective. Cancer Res 2010; 70:5649-69; PMID:20610625; http://dx.doi.org/10.1158/0008-5472.CAN-10-1040
  • Li DM, Feng YM. Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 2011; 128:7-21; PMID:21499686; http://dx.doi.org/10.1007/s10549-011-1499-x
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2:161-74; PMID:11990853; http://dx.doi.org/10.1038/nrc745
  • Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M, Romer J. Plasminogen activation and cancer. Thromb Haemost 2005; 93:676-81; PMID:15841311
  • Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 2008; 1:re6; PMID:18612141; http://dx.doi.org/10.1126/scisignal.127re6
  • Takawale A, Sakamuri SS, Kassiri Z. Extracellular matrix communication and turnover in cardiac physiology and pathology. Compr Physiol 2015; 5:687-719; PMID:25880510; http://dx.doi.org/10.1002/cphy.c140045
  • Hanahan D, Weinberg RA. “Hallmarks of cancer: the next generation.” Cell 2011; 144:646-74; PMID:21376230; http://dx.doi.org/10.1016/j.cell.2011.02.013
  • Yadav L, Puri N, Rastogi V, Satpute P, Ahmad R, Kaur G. Matrix metalloproteinases and cancer – roles in threat and therapy. Asian Pac J Cancer Prev 2014; 15:1085-91; PMID:24606423; http://dx.doi.org/10.7314/APJCP.2014.15.3.1085
  • Guadamillas MC, Cerezo A, Del Pozo MA. Overcoming anoikis-pathways to anchorage-independent growth in cancer. J Cell Sci 2011; 124:3189-97; PMID:21940791; http://dx.doi.org/10.1242/jcs.072165
  • Sutherland RM, McCredie JA, Inch WR. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 1971; 46:113-20; PMID:5101993
  • Kunz-Schughart LA, Kreutz M, Knuechel R. Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 1998; 79:1-23; PMID:9614346; http://dx.doi.org/10.1046/j.1365-2613.1998.00051.x
  • Hughes L, Malone C, Chumsri S, Burger AM, McDonnell S. Characterization of breast cancer cell lines and establishment of a novel isogenic subclone to study migration, invasion and tumourigenicity. Clin Exp Metastasis 2008; 25:549-57; PMID:18386134; http://dx.doi.org/10.1007/s10585-008-9169-z
  • Yang C, Chen H, Yu L, Shan L, Xie L, Hu J, Chen T, Tan Y. Inhibition of FOXM1 transcription factor suppresses cell proliferation and tumor growth of breast cancer. Cancer Gene Ther 2013; 20:117-24; PMID:23306612; http://dx.doi.org/10.1038/cgt.2012.94
  • Xia TS, Wang GZ, Ding Q, Liu XA, Zhou WB, Zhang YF, Zha XM, Du Q, Ni XJ, Wang J, et al. Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat 2012; 132:471-86; PMID:21638054; http://dx.doi.org/10.1007/s10549-011-1496-0
  • Zhong Y, Ji B. Impact of cell shape on cell migration behavior on elastic substrate. Biofabrication 2013; 5:15011-20; PMID:23302223; http://dx.doi.org/10.1088/1758-5082/5/1/015011
  • Friedl P, Wolf K. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 2008; 68:7247-9; PMID:18794108; http://dx.doi.org/10.1158/0008-5472.CAN-08-0784
  • Mierke CT, Rosel D, Fabry B, Brabek J. Contractile forces in tumor cell migration. Eur J Cell Biol 2008; 87:669-76; PMID:18295931; http://dx.doi.org/10.1016/j.ejcb.2008.01.002
  • Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005; 15:378-86; PMID:15975825; http://dx.doi.org/10.1016/j.semcancer.2005.05.004
  • Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014; 79-80:3-18; PMID:24997339; http://dx.doi.org/10.1016/j.addr.2014.06.005
  • Kim YS, Kim SH, Kang JG, Ko JH. Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression. BMB Rep 2012; 45:623-8; PMID:23187000; http://dx.doi.org/10.5483/BMBRep.2012.45.11.233
  • Boccuzzi G, Brignardello E, di Monaco M, Forte C, Leonardi L, Pizzini A. Influence of dehydroepiandrosterone and 5-en-androstene-3 β, 17 β-diol on the growth of MCF-7 human breast cancer cells induced by 17 β-estradiol. Anticancer Res 1992; 12:799-803; PMID:1535770
  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235:177-82; PMID:3798106; http://dx.doi.org/10.1126/science.3798106
  • Dillon JS. Dehydroepiandrosterone, dehydroepiandrosterone sulfate and related steroids: their role in inflammatory, allergic and immunological disorders. Curr Drug Targets Inflamm Allergy 2005; 4:377-85; PMID:16101547; http://dx.doi.org/10.2174/1568010054022079
  • Singer CF, Hudelist G, Gschwantler-Kaulich D, Fink-Retter A, Mueller R, Walter I, Czerwenka K, Kubista E. Interleukin-1alpha protein secretion in breast cancer is associated with poor differentiation and estrogen receptor α negativity. Int J Gynecol Cancer 2006; 16(2):556-9; PMID:17010072; http://dx.doi.org/10.1111/j.1525-1438.2006.00695.x
  • Heikkilä K, Ebrahim S, Lawlor DA. Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer 2008; 44:937-45; PMID:18387296; http://dx.doi.org/10.1016/j.ejca.2008.02.047
  • Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, Winder T, Yang D, LaBonte MJ, Wilson PM, et al. Interleukin-8is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Inter J Cancer 2011; 128:2038-49; PMID:20648559; http://dx.doi.org/10.1002/ijc.25562
  • Clendenen TV, Koenig KL, Arslan AA, Lukanova A, Berrino F, Gu Y, Hallmans G, Idahl A, Krogh V, Lokshin AE, et al. Factors associated with inflammation markers, a cross-sectional analysis. Cytokine 2011; 56:769-78; PMID:22015105; http://dx.doi.org/10.1016/j.cyto.2011.09.013
  • Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, Kuroda M, Aoyagi Y, Miyazaki M. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat 2015; 150:255-63; PMID:25721605; http://dx.doi.org/10.1007/s10549-015-3318-2
  • Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23:1011-27; PMID:15585754; http://dx.doi.org/10.1200/JCO.2005.06.081
  • Shin SI, Freedman VH, Risser R, Pollack R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 1975; 72:4435-9; PMID:172908; http://dx.doi.org/10.1073/pnas.72.11.4435
  • Schwachoefer JH, Crooijmans RP, Hoogenhout J, Kal HB, Theeuwes AG. Sublethal damage repair in multicellular spheroids from a human melanoma line: Relationship to the size at irradiation. Cancer Ther Contr 1991; 1:293-308; PMID:1871510
  • Sutherland RM. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 1988; 240:177-84; PMID:2451290; http://dx.doi.org/10.1126/science.2451290
  • Span PN, Bussink J. Biology of hypoxia. Semin Nucl Med 2015; 45:101-9; PMID:25704383; http://dx.doi.org/10.1053/j.semnuclmed.2014.10.002
  • Shweiki D, Neemant M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: Implications for tumor angiogenesis. Proc Natl Acad Sci USA 1995; 92:768-72; PMID:7531342; http://dx.doi.org/10.1073/pnas.92.3.768
  • Rao MS, Subbarao V, Yeldandi AV, Reddy JK. Hepatocarcinogenicity of dehydroepiandrosterone in the rat. Cancer Res 1992; 52:2977-9; PMID:1316232
  • Metzger C, Bannasch P, Mayer D. Enhancement and phenotypic modulation of N-nitrosomorpholine-induced hepatocarcinogenesis by dehydroepiandrosterone. Cancer Lett 1997; 121:125-31; PMID:9570349; http://dx.doi.org/10.1016/S0304-3835(97)00341-8
  • Arnold JT, Le H, McFann KK, Blackman MR. Comparative effects of DHEA vs. testosterone, dihydrotestosterone, and estradiol on proliferation and gene expression in human LNCaP prostate cancer cells. Am J Physiol Endocrinol Metab 2005; 288:E573-84; PMID:15536203; http://dx.doi.org/10.1152/ajpendo.00454.2004
  • Yuhas JM, Tarleton AE, Molzen KB. Multicellular tumor spheroid formation by breast cancer cells isolated from different sites. Cancer Res 1978; 38:2486-91; PMID:667844
  • Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, et al. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl) 2010; 4:35-41; PMID:20697531
  • Marzec KA, Lin MZ, Martin JL, Baxter RC. Involvement of p53 in insulin-like growth factor binding protein-3 regulation in the breast cancer cell response to DNA damage. Oncotarget 2015; 6:26583-98; PMID:26378048; http://dx.doi.org/10.18632/oncotarget.5612
  • Geng QQ, Dong DF, Chen NZ, Wu YY, Li EX, Wang J, Wang SM. Induction of p53 expression and apoptosis by a recombinant dual-target MDM2/MDMX inhibitory protein in wild-type p53 breast cancer cells. Int J Oncol 2013; 43:1935-42; PMID:24126697
  • Yaacob NS, Nik Mohamed Kamal NN, Wong KK, Norazmi MN. Cell Cycle Modulation of MCF-7 and MDA-MB-231 by a Sub- Fraction of Strobilanthes crispus and its combination with Tamoxifen. Asian Pac J Cancer Prev 2015; 16:8135-40; PMID:26745050; http://dx.doi.org/10.7314/APJCP.2015.16.18.8135
  • Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adélaïde J, Cervera N, Fekairi S, Xerri L, Jacquemier J, Birnbaum D, et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 2006; 25:2273-84; PMID:16288205; http://dx.doi.org/10.1038/sj.onc.1209254
  • Engel LW, Young NA, Tralka TS, Lippman ME, O'Brien SJ, Joyce MJ. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res 1978; 38:3352-64; PMID:688225
  • Conley SJ, Bosco EE, Tice DA, Hollingsworth RE, Herbst R, Xiao Z. HER2 drives Mucin-like 1 to control proliferation in breast cancer cells. Oncogene 2016; 1-10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.