1,526
Views
12
CrossRef citations to date
0
Altmetric
Research Paper

Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines

, , , , &
Pages 400-406 | Received 19 Oct 2016, Accepted 23 Apr 2017, Published online: 14 Jun 2017

References

  • Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: From molecular pathology to targeted treatment. Annu Rev Pathol 2014; 9:1-25; PMID:23937436; https://doi.org/10.1146/annurev-pathol-011110-130324
  • Inda M-D-M, Bonavia R, Seoane J. Glioblastoma multiforme: A look inside its heterogeneous nature. Cancers (Basel) 2014; 6(1):226-39; PMID:24473088; https://doi.org/10.3390/cancers6010226
  • Karsy M, Gelbman M, Shah P, Balumbu O, Moy F, Arslan E. Established and emerging variants of glioblastoma multiforme: Review of morphological and molecular features. Folia Neuropathol 2012; 50(4):301-21; PMID:23319187; https://doi.org/10.5114/fn.2012.32361
  • Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, Armstrong TS, Wefel JS, Won M, Blumenthal DT, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: A randomized phase III clinical trial. J Clin Oncol 2013; 31(32):4085-91; PMID:24101040; https://doi.org/10.1200/JCO.2013.49.6968
  • Nanegrungsunk D, Onchan W, Chattipakorn N, Chattipakorn SC. Current evidence of temozolomide and bevacizumab in treatment of gliomas. Neurol Res 2015; 37(2):167-83; PMID:25033940; https://doi.org/10.1179/1743132814Y.0000000423
  • Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci 2014; 15(7):455-65; PMID:24946761; https://doi.org/10.1038/nrn3765
  • Harris AL. Hypoxia — A key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2(1):38-47; PMID:11902584; https://doi.org/10.1038/nrc704
  • Vaupel P, Höckel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 2007; 9(8):1221-35; PMID:17536958; https://doi.org/10.1089/ars.2007.1628
  • Combs SE, Schmid TE, Vaupel P, Multhoff G. Stress response leading to resistance in glioblastoma- The need for innovative radiotherapy (iRT) concepts. Cancers (Basel) 2016; 8(1):15; PMID:26771644; https://doi.org/10.3390/cancers8010015
  • Li P, Zhou C, Xu L, Xiao H. Hypoxia enhances stemness of cancer stem cells in glioblastoma: An in vitro study. Int J Med Sci 2013; 10(4):399-407; PMID:23471193; https://doi.org/10.7150/ijms.5407 10.7150/ijms.5770 10.7150/ijms.5224
  • Joseph J V, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, Balasubramaniyan V, Wagemakers M, den Dunnen WF, Kruyt FA. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIFα -ZEB1 axis. Cancer Lett 2015; 359(1):107-16; PMID:25592037; https://doi.org/10.1016/j.canlet.2015.01.010
  • Matschke J, Riffkin H, Klein D, Handrick R, Lüdemann L, Metzen E, Shlomi T, Stuschke M, Jendrossek V. Targeted inhibition of glutamine-dependent glutathione metabolism overcomes death resistance induced by chronic cycling hypoxia. Antioxid Redox Signal 2016; 25(2):89-107; PMID:27021152; https://doi.org/10.1089/ars.2015.6589
  • Dokic I, Hartmann C, Herold-Mende C, Régnier-Vigouroux A. Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia 2012; 60(11):1785-800; PMID:22951908; https://doi.org/10.1002/glia.22397
  • Kanzawa T, Bedwell J, Kondo Y, Kondo S, Germano IM. Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg 2003; 99(6):1047-52; PMID:14705733; https://doi.org/10.3171/jns.2003.99.6.1047
  • Jiang G, Li L-T, Xin Y, Zhang L, Liu Y-Q, Zheng J-N. Strategies to improve the killing of tumors using temozolomide: Targeting the DNA repair protein MGMT. Curr Med Chem 2012; 19(23):3886-92; PMID:22788764; https://doi.org/10.2174/092986712802002446
  • van Nifterik KA, van den Berg J, van der Meide WF, Ameziane N, Wedekind LE, Steenbergen RDM, Leenstra S, Lafleur MV, Slotman BJ, Stalpers LJ, et al. Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer 2010; 103(1):29-35; PMID:20517307; https://doi.org/10.1038/sj.bjc.6605712
  • Karsy M, Neil JA, Guan J, Mark MA, Colman H, Jensen RL. A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 2015; 38(3):1-8; PMID:25727226; https://doi.org/10.3171/2015.1.FOCUS14755
  • Desai R, Suryadevara CM, Batich KA, Farber SH, Sanchez-Perez L, Sampson JH. Emerging immunotherapies for glioblastoma. Expert Opin Emerg Drugs 2016; 21(2):133-45; PMID:27223671; https://doi.org/10.1080/14728214.2016.1186643
  • Bien-möller S, Lange S, Holm T, Böhm A, Paland H, Küpper J, Herzog S, Weitmann K, Havemann C, Vogelgesang S, et al. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme. Oncotarget 2016; 7(11):13031-46; PMID:26887055; https://doi.org/10.18632/oncotarget.7366
  • Abuhusain HJ, Matin A, Qiao Q, Shen H, Kain N, Day BW, Stringer BW, Daniels B, Laaksonen MA, Teo C, et al. A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem 2013; 288(52):37355-64; PMID:24265321; https://doi.org/10.1074/jbc.M113.494740
  • Liu H, Chakravarty D, Maceyka M, Milstien S, Spiegel S. Sphingosine kinases: A novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol 2002; 71:493-506; PMID:12102559; https://doi.org/10.1016/S0079-6603(02)71049-0
  • Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 2010; 688:141-55; PMID:20919652; https://doi.org/10.1007/978-1-4419-6741-1_10
  • Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: An autocrine and paracrine network. Nat Rev Immunol 2005;5(7):560-70; PMID:15999095; https://doi.org/10.1038/nri1650
  • Quint K, Stiel N, Neureiter D, Schlicker HU, Nimsky C, Ocker M, Strik H, Kolodziej MA. The role of sphingosine kinase isoforms and receptors S1P1, S1P2, S1P3, and S1P5 in primary, secondary, and recurrent glioblastomas. Tumor Biol 2014; 35(9):8979-89; PMID:24903384; https://doi.org/10.1007/s13277-014-2172-x
  • Anelli V, Gault CR, Cheng AB, Obeid LM. Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells: Role of hypoxia-inducible factors 1 and 2. J Biol Chem 2008; 283(6):3365-75; PMID:18055454; https://doi.org/10.1074/jbc.M708241200
  • Riccitelli E, Giussani P, Di Vito C, Condomitti G, Tringali C, Caroli M, Galli R, Viani P, Riboni L. Extracellular sphingosine-1-phosphate: A novel actor in human glioblastoma stem cell survival. PLoS One 2013; 8(6):1-11; PMID:23826381; https://doi.org/10.1371/journal.pone.0068229
  • Kunkel GT, Maceyka M, Milstien S, Spiegel S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 2013; 12(9):688-702; PMID:23954895; https://doi.org/10.1038/nrd4099
  • Canals D, Hannun YA. Novel chemotherapeutic drugs in sphingolipid cancer research. Handb Exp Pharmacol 2013; (215):211-38; PMID:23579458; https://doi.org/10.1007/978-3-7091-1368-4_12
  • Mora R, Dokic I, Kees T, Hüber CM, Keitel D, Geibig R, Brügge B, Zentgraf H, Brady NR, Régnier-Vigouroux A. Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma. Glia 2010; 58(11):1364-83; PMID:20607862; https://doi.org/10.1002/glia.21013
  • Gault CR, Obeid LM. Still benched on its way to the bedside: Sphingosine kinase 1 as an emerging target in cancer chemotherapy. Crit Rev Biochem Mol Biol 2011; 46(4):342-51; PMID:21787121; https://doi.org/10.3109/10409238.2011.597737
  • Huwiler A, Kotelevets N, Xin C, Pastukhov O, Pfeilschifter J, Zangemeister-Wittke U. Loss of sphingosine kinase-1 in carcinoma cells increases formation of reactive oxygen species and sensitivity to doxorubicin-induced DNA damage. Br J Pharmacol 2011; 162(2):532-43; PMID:20883472; https://doi.org/10.1111/j.1476-5381.2010.01053.x
  • French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, Yun JK, Smith CD. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 2003; 63:5962-9; PMID:14522923
  • Noack J, Choi J, Richter K, Kopp-Schneider A, Régnier-Vigouroux A. A sphingosine kinase inhibitor combined with temozolomide induces glioblastoma cell death through accumulation of dihydrosphingosine and dihydroceramide, endoplasmic reticulum stress and autophagy. Cell Death Dis 2014; 5:e1425; PMID:25255218; https://doi.org/10.1038/cddis.2014.384
  • Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc 2006; 1(5):2315-9; PMID:17406473; https://doi.org/10.1038/nprot.2006.339
  • Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 2003; 60:6-20; PMID:12613655; https://doi.org/10.1007/s000180300001
  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 10(352):987-96; PMID:15758009; https://doi.org/10.1056/NEJMoa043330
  • Diaz-Miqueli A, Saurez Martinez G. Nimotuzumab as a radiosensitizing agent in the treatment of high grade glioma: Challenges and opportunities. OncoTarget Ther 2013; 6:931-42; PMID:23926436; https://doi.org/10.2147/OTT.S33532
  • Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370(8):709-22; PMID:24552318; https://doi.org/10.1056/NEJMoa1308345
  • Masood R, Roy I, Zu S, Hochstim C, Yong K-T, Law W-C, Ding H, Sinha UK, Prasad PN. Gold nanorod-sphingosine kinase siRNA nanocomplexes: A novel therapeutic tool for potent radiosensitization of head and neck cancer. Integr Biol (Camb) 2012; 4(2):132-41; PMID:22159374; https://doi.org/10.1039/C1IB00060H
  • Pchejetski D, Böhler T, Stebbing J, Waxman J. Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer. Nat Rev Urol 2011; 8(10):569-678; PMID:21912422; https://doi.org/10.1038/nrurol.2011.117
  • Lin CJ, Lee CC, Shih YL, Lin TY, Wang SH, Lin YF, Shih CM. Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med 2012; 52:377-91; PMID:22094224; https://doi.org/10.1016/j.freeradbiomed.2012.02.028 10.1016/j.freeradbiomed.2011.10.487
  • Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Mutat Res 2016; 769:19-35; PMID:27543314; https://doi.org/10.1016/j.mrrev.2016.05.005
  • Latz D, Fleckenstein K, Eble M, Blatter J, Wannenmacher M, Weber KJ. Radiosensitizing potential of gemcitabine (2′,2′-difluoro-2′ deoxycytidine) within the cell cycle in vitro. Int J Radiat Oncol Biol Phys 1998; 41(4):875-82; PMID:9652852; https://doi.org/10.1016/S0360-3016(98)00105-9