3,409
Views
48
CrossRef citations to date
0
Altmetric
Review

CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors

, , &
Pages 379-391 | Received 02 Dec 2016, Accepted 23 Apr 2017, Published online: 14 Jun 2017

References

  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 1993; 12:469-78; PMID:8440238
  • Schaeper U, Subramanian T, Lim L, Boyd JM, Chinnadurai G. Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J Biol Chem 1998; 273:8549-52; PMID:9535825; https://doi.org/10.1074/jbc.273.15.8549
  • Chinnadurai G, Chinnadurai G. CtBP family proteins: Unique transcriptional regulators in the nucleus with diverse cytosolic functions. In: Madame Curie Bioscience Database. Austin (TX): Landes Bioscience; 2000–2013; https://doi.org/10.1007/978-0-387-39973-7_1
  • Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 2002; 22:5296-307; PMID:12101226; https://doi.org/10.1128/MCB.22.15.5296-5307.2002
  • Chinnadurai G. CtBP family proteins. In: Chinnadurai G, ed. GtBP Family Proteins. New York, NY: Springer New York; 2007:1-17; https://doi.org/10.1007/978-0-387-39973-7_1
  • Nibu Y, Zhang H, Bajor E, Barolo S, Small S, Levine M. dCtBP mediates transcriptional repression by knirps, kruppel and snail in the drosophila embryo. EMBO J 1998; 17:7009-7020; PMID:9843507; https://doi.org/10.1093/emboj/17.23.7009
  • Nibu Y, Zhang H, Levine M. Interaction of short-range repressors with drosophila CtBP in the embryo. Science 1998; 280:101-4; PMID:9525852; https://doi.org/10.1126/science.280.5360.101
  • Poortinga G, Watanabe M, Parkhurst SM. Drosophila CtBP: A hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 1998; 17:2067-78; PMID:9524128; https://doi.org/10.1093/emboj/17.7.2067
  • Reid A, Yucel D, Wood M, Llamosas E, Kant S, Crossley M, Nicholas H. The transcriptional repressor CTBP-1 functions in the nervous system of caenorhabditis elegans to regulate lifespan. Exp Gerontol 2014; 60:153-65; PMID:25456848; https://doi.org/10.1016/j.exger.2014.09.022
  • Chen S, Whetstine JR, Ghosh S, Hanover JA, Gali RR, Grosu P, Shi Y. The conserved NAD(H)-dependent corepressor CTBP-1 regulates caenorhabditis elegans life span. Proc Nat Acad Sci 2009; 106:1496-501; PMID:19164523; https://doi.org/10.1073/pnas.0802674106
  • Stankiewicz TR, Gray JJ, Winter AN, Linseman DA. C-terminal binding proteins: Central players in development and disease. Biomol Concepts 2014; 5:489-511; PMID:25429601; https://doi.org/10.1515/bmc-2014-0027
  • Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopra A. 2-deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 2006; 9:1382-87; PMID:17041593; https://doi.org/10.1038/nn1791
  • Saijo K, Collier JG, Li AC, Katzenellenbogen JA, Glass CK. An ADIOL-ERbeta-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell 2011; 145:584-95; PMID:21565615; https://doi.org/10.1016/j.cell.2011.03.050
  • Huard CC, Tremblay CS, Helsper K, Delisle MC, Schindler D, Levesque G, Carreau M. Fanconi anemia proteins interact with CtBP1 and modulate the expression of the wnt antagonist dickkopf-1. Blood 2013; 121:1729-39; PMID:23303816; https://doi.org/10.1182/blood-2012-02-408997
  • Chinnadurai G. The transcriptional corepressor CtBP: A foe of multiple tumor suppressors. Cancer Res 2009; 69:731-4; PMID:19155295; https://doi.org/10.1158/0008-5472.CAN-08-3349
  • Bergman LM, Morris L, Darley M, Mirnezami AH, Gunatilake SC, Blaydes JP. Role of the unique N-terminal domain of CtBP2 in determining the subcellular localisation of CtBP family proteins. BMC Cell Biol 2006; 7:35; PMID:16999872; https://doi.org/10.1186/1471-2121-7-35
  • Lundblad JR. Structural determinants of CtBP function. In: Chinnadurai G, ed. GtBP Family Proteins. New York, NY: Springer New York; 2007:83-92; https://doi.org/10.1007/978-0-387-39973-7_1
  • Kuppuswamy M, Vijayalingam S, Zhao LJ, Zhou Y, Subramanian T, Ryerse J, Chinnadurai G. Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 2008; 28:269-81; PMID:17967884; https://doi.org/10.1128/MCB.01077-07
  • Verger A, Quinlan KG, Crofts LA, Spano S, Corda D, Kable EP, Braet F, Crossley M. Mechanisms directing the nuclear localization of the CtBP family proteins. Mol Cell Biol 2006; 26:4882-94; PMID:16782877; https://doi.org/10.1128/MCB.02402-05
  • Corda D, Colanzi A, Luini A. The multiple activities of CtBP/BARS proteins: The golgi view. Trends Cell Biol 2006; 16:167-73; PMID:16483777; https://doi.org/10.1016/j.tcb.2006.01.007
  • Bartz R, Seemann J, Zehmer JK, Serrero G, Chapman KD, Anderson RG, Liu P. Evidence that mono-ADP-ribosylation of CtBP1/BARS regulates lipid storage. Mol Biol Cell 2007; 18:3015-25; PMID:17538025; https://doi.org/10.1091/mbc.E06-09-0869
  • Schmitz F, Konigstorfer A, Sudhof TC. RIBEYE, a component of synaptic ribbons: A protein's journey through evolution provides insight into synaptic ribbon function. Neuron 2000; 28:857-72; PMID:11163272; https://doi.org/10.1016/S0896-6273(00)00159-8
  • Shi Y, Sawada J, Sui G, Affar el B, Whetstine JR, Lan F, Ogawa H, Luke MP, Nakatani Y, Shi Y. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 2003; 422:735-8; PMID:12700765; https://doi.org/10.1038/nature01550
  • Chinnadurai G. CtBP family proteins: More than transcriptional corepressors. Bioessays 2003; 25:9-12; PMID:12508276; https://doi.org/10.1002/bies.10212
  • Quinlan KG, Verger A, Kwok A, Lee SH, Perdomo J, Nardini M, Bolognesi M, Crossley M. Role of the C-terminal binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. Mol Cell Biol 2006; 26:8202-13; PMID:16940173; https://doi.org/10.1128/MCB.00445-06
  • Zhang CL, McKinsey TA, Lu J, Olson EN. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 2001; 276:35-9; PMID:11022042; https://doi.org/10.1074/jbc.M007364200
  • Vliet Jv, Turner J, Crossley M. Human krüppel-like factor 8: A CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 2000; 28:1955-62; PMID:10756197; https://doi.org/10.1093/nar/28.9.1955
  • Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005; 19:857-64; PMID:16140033; https://doi.org/10.1016/j.molcel.2005.08.027
  • Ray SK, Li HJ, Metzger E, Schüle R, Leiter AB. CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol 2014; 34:2308-17; PMID:24732800; https://doi.org/10.1128/MCB.01600-13
  • Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002; 10:857-869; PMID:12419229; https://doi.org/10.1016/S1097-2765(02)00650-0
  • Bhambhani C, Chang JL, Akey DL, Cadigan KM. The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of wingless targets. EMBO J 2011; 30:2031-43; PMID:21468031; https://doi.org/10.1038/emboj.2011.100
  • Fang M, Li J, Blauwkamp T, Bhambhani C, Campbell N, Cadigan KM. C-terminal-binding protein directly activates and represses wnt transcriptional targets in drosophila. EMBO J 2006; 25:2735-45; PMID:16710294; https://doi.org/10.1038/sj.emboj.7601153
  • Ray SK, Li HJ, Leiter AB. Oligomeric form of C-terminal-binding protein coactivates NeuroD1-mediated transcription. FEBS Lett 2017; 591:205-12; PMID:27880001; https://doi.org/10.1002/1873-3468.12501
  • Zhang Q, Piston DW, Goodman RH. Regulation of corepressor function by nuclear NADH. Science 2002; 295:1895-7; PMID:11847309; https://doi.org/10.1126/science.1069300
  • Madison DL, Wirz JA, Siess D, Lundblad JR. Nicotinamide adenine dinucleotide-induced multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J Biol Chem 2013; 288:27836-48; PMID:23940047; https://doi.org/10.1074/jbc.M113.493569
  • Kuppuswamy M, Vijayalingam S, Zhao L, Zhou Y, Subramanian T, Ryerse J, Chinnadurai G. Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 2008; 28:269-81; PMID:17967884; https://doi.org/10.1128/MCB.01077-07
  • Grooteclaes M, Deveraux Q, Hildebrand J, Zhang Q, Goodman RH, Frisch SM. C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci U S A 2003; 100:4568-73; PMID:12676992; https://doi.org/10.1073/pnas.0830998100
  • Barnes CJ, Vadlamudi RK, Mishra SK, Jacobson RH, Li F, Kumar R. Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Mol Biol 2003; 10:622-8 PMID:12872159; https://doi.org/10.1038/nsb957
  • Kim J, Choi S, Kang B, Lee S, Park HS, Kang G, Bang JY, Cho E, Youn H. AMP-activated protein kinase phosphorylates CtBP1 and down-regulates its activity. Biochem Biophys Res Commun 2013; 431:8-13; PMID:23291169; https://doi.org/10.1016/j.bbrc.2012.12.117
  • Merrill JC, Kagey MH, Melhuish TA, Powers SE, Zerlanko BJ, Wotton D. Inhibition of CtBP1 activity by akt-mediated phosphorylation. J Mol Biol 2010; 398:657-71; PMID:20361981; https://doi.org/10.1016/j.jmb.2010.03.048
  • Nardini M, Svergun D, Konarev PV, Spano S, Fasano M, Bracco C, Pesce A, Donadini A, Cericola C, Secundo F, Luini A, Corda D, Bolognesi M. The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Sci 2006; 15:1042-1050; PMID:16597837; https://doi.org/10.1110/ps.062115406
  • Riefler GM, Firestein BL. Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nNOS. J Biol Chem 2001; 276:48262-8; PMID:11590170; https://doi.org/10.1074/jbc.M106503200
  • Lin X, Sun B, Liang M, Liang YY, Gast A, Hildebrand J, Brunicardi FC, Melchior F, Feng XH. Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 2003; 11:1389-96; PMID:12769861; https://doi.org/10.1016/S1097-2765(03)00175-8
  • Paliwal S, Pande S, Kovi RC, Sharpless NE, Bardeesy N, Grossman SR. Targeting of C-terminal binding protein (CtBP) by ARF results in p53-independent apoptosis. Mol Cell Biol 2006; 26:2360-72; PMID:16508011; https://doi.org/10.1128/MCB.26.6.2360-2372.2006
  • Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH. Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 2003; 115:177-86; PMID:14567915; https://doi.org/10.1016/S0092-8674(03)00802-X
  • Wang S, Iordanov M, Zhang Q. C-jun NH2-terminal kinase promotes apoptosis by down-regulating the transcriptional co-repressor CtBP. J Biol Chem 2006; 281:34810-15; PMID:16984892; https://doi.org/10.1074/jbc.M607484200
  • Hofmann TG, Stollberg N, Schmitz ML, Will H. HIPK2 regulates transforming growth factor-ß-induced c-jun NH2-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 2003; 63:8271-77; PMID:14678985
  • Yang SH, Galanis A, Witty J, Sharrocks AD. An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J 2006; 25:5083-93; PMID:17036045; https://doi.org/10.1038/sj.emboj.7601383
  • Kovi RC, Paliwal S, Pande S, Grossman SR. An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death Differ 2010; 17:513-21; PMID:19798104; https://doi.org/10.1038/cdd.2009.140
  • Paliwal S, Kovi RC, Nath B, Chen YW, Lewis BC, Grossman SR. The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Res 2007; 67:932229; PMID:17909040; https://doi.org/10.1158/0008-5472.CAN-07-1743
  • Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 2002; 9:213-24; PMID:11864595; https://doi.org/10.1016/S1097-2765(02)00443-4
  • Lin HJ, Eviner V, Prendergast GC, White E. Activated H-ras rescues E1A-induced apoptosis and cooperates with E1A to overcome p53-dependent growth arrest. Mol Cell Biol 1995; 15:4536-44; PMID:7623844; https://doi.org/10.1128/MCB.15.8.4536
  • Palmer S, Brouillet J, Kilbey A, Fulton R, Walker M, Crossley M, Bartholomew C. Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem 2001; 276:25834-40; PMID:11328817; https://doi.org/10.1074/jbc.M102343200
  • Sumner. ET, Chawla A, Cororaton A, Koblinski J, Kovi R, Love I, Szomju B, Korwar S, Ellis K, Grossman S. Transforming activity and therapeutic targeting of C-terminal binding protein 2 in apc mutated neoplasia. Oncogene 2017; in press; PMID:28414304; https://doi.org/10.1038/onc.2017.106
  • Byun JS, Gardner K. C-terminal binding protein: A molecular link between metabolic imbalance and epigenetic regulation in breast cancer. Int J Cell Biol 2013; 2013:647975; PMID:23762064; https://doi.org/10.1155/2013/647975
  • Zheng X, Song T, Dou C, Jia Y, Liu Q. CtBP2 is an independent prognostic marker that promotes GLI1 induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2015; 6:3752-69; PMID:25686837; https://doi.org/10.18632/oncotarget.2915
  • Birts CN, Harding R, Soosaipillai G, Halder T, Azim-Araghi A, Darley M, Cutress RI, Bateman AC, Blaydes JP. Expression of CtBP family protein isoforms in breast cancer and their role in chemoresistance. Biol Cell 2010; 103:1-19; PMID:20964627; https://doi.org/10.1042/BC20100067
  • Di LJ, Byun JS, Wong MM, Wakano C, Taylor T, Bilke S, Baek S, Hunter K, Yang H, Lee M, Zvosec C, Khramtsova G, Cheng F, Perou CM, Miller CR, Raab R, Olopade OI, Gardner K. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer. Nat Commun 2013; 4:1449; PMID:23385593; https://doi.org/10.1038/ncomms2438
  • Jin W, Scotto KW, Hait WN, Yang J. Involvement of CtBP1 in the transcriptional activation of the MDR1 gene in human multidrug resistant cancer cells. Biochem Pharmacol 2007; 74:851-9; PMID:17662696; https://doi.org/10.1016/j.bcp.2007.06.017
  • Hanahan D, Weinberg R. Hallmarks of cancer: The next generation. Cell 2011; 144:646-74; PMID:21376230; https://doi.org/10.1016/j.cell.2011.02.013
  • Wang R, Asangani IA, Chakravarthi BV, Ateeq B, Lonigro RJ, Cao Q, Mani RS, Camacho DF, McGregor N, Schumann TE, Jing X, Menawat R, Tomlins SA, Zheng H, Otte AP, Mehra R, Siddiqui J, Dhanasekaran SM, Nyati MK, Pienta KJ, Palanisamy N, Kunju LP, Rubin MA, Chinnaiyan AM, Varambally S. Role of transcriptional corepressor CtBP1 in prostate cancer progression. Neoplasia 2012; 14:905-14; PMID:23097625; https://doi.org/10.1593/neo.121192
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119:1420-28; PMID:19487818; https://doi.org/10.1172/JCI39104
  • Zhang Q, Wang SY, Nottke AC, Rocheleau JV, Piston DW, Goodman RH. Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci U S A 2006; 103:9029-33; PMID:16740659; https://doi.org/10.1073/pnas.0603269103
  • Zhang XL, Huang CX, Zhang J, Inoue A, Zeng SE, Xiao SJ. CtBP1 is involved in epithelial-mesenchymal transition and is a potential therapeutic target for hepatocellular carcinoma. Oncol Rep 2013; 30:809-14; PMID:23756565; https://doi.org/10.3892/or.2013.2537
  • Shin S, Dimitri CA, Yoon S, Dowdle W, Blenis J. ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 2010; 38:114-127; PMID:20385094; https://doi.org/10.1016/j.molcel.2010.02.020
  • Ichikawa K, Kubota Y, Nakamura T, Weng J, Tomida T, Saito H, Takekawa M. MCRIP1, an ERK substrate, mediates ERK-induced gene silencing during epithelial-mesenchymal transition by regulating the co-repressor CtBP. Mol Cell 2015; 58:35-46; PMID:25728771; https://doi.org/10.1016/j.molcel.2015.01.023
  • Barroilhet L, Yang J, Hasselblatt K, Paranal RM, Ng SK, Rauh-Hain JA, Welch WR, Bradner JE, Berkowitz RS, Ng SW. C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene 2013; 32:3896-903; PMID:22945647; https://doi.org/10.1038/onc.2012.380
  • Minard ME, Kim LS, Price JE, Gallick GE. The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res Treat 2004; 84:21-32; PMID:14999151; https://doi.org/10.1023/B:BREA.0000018421.31632.e6
  • Yamada KM, Araki M. Tumor suppressor PTEN: Modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114:2375-82; PMID:11559746
  • Paliwal S, Ho N, Parker D, Grossman SR. CtBP2 promotes human cancer cell migration by transcriptional activation of Tiam1. Genes Cancer 2012; 3:481-90; PMID:23264848; https://doi.org/10.1177/1947601912463695
  • Di L, Fernandez AG, De Siervi A, Longo DL, Gardner K. Transcriptional regulation of BRCA1 expression by a metabolic switch. Nat Struct Mol Biol 2010; 17:1406-13; PMID:21102443; https://doi.org/10.1038/nsmb.1941
  • Moiola CP, De Luca P, Zalazar F, Cotignola J, Rodriguez-Segui SA, Gardner K, Meiss R, Vallecorsa P, Pignataro O, Mazza O, Vazquez ES, De Siervi A. Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clin Cancer Res 2014; 20:4086-95; PMID:24842953; https://doi.org/10.1158/1078-0432.CCR-14-0322
  • De Luca P, Dalton GN, Scalise GD, Moiola CP, Porretti J, Massillo C, Kordon E, Gardner K, Zalazar F, Flumian C, et al. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs. Oncotarget 2016; 7(14):18798-811; PMID:26933806; https://doi.org/10.18632/oncotarget.7711
  • Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13:11-26; PMID:23258168; https://doi.org/10.1038/nrc3419
  • Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell 2004; 7:677-85; PMID:15525529; https://doi.org/10.1016/j.devcel.2004.08.022
  • Schneikert J, Brauburger K, Behrens J. APC mutations in colorectal tumours from FAP patients are selected for CtBP-mediated oligomerization of truncated APC. Human Mol Genet 2011; 20:3554-64; PMID:21665989; https://doi.org/10.1093/hmg/ddr273
  • Choi SH, Estaras C, Moresco JJ, Yates JR, Jones KA 3rd. Alpha-catenin interacts with APC to regulate beta-catenin proteolysis and transcriptional repression of wnt target genes. Genes Dev 2013; 27:2473-88; PMID:24240237; https://doi.org/10.1101/gad.229062.113
  • Sierra J, Yoshida T, Joazeiro CA, Jones KA. The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at wnt target genes. Genes Dev 2006; 20:586-600; PMID:16510874; https://doi.org/10.1101/gad.1385806
  • Patel J, Baranwal S, Love IM, Patel NJ, Grossman SR, Patel BB. Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle 2014; 13:3506-18; PMID:25483087; https://doi.org/10.4161/15384101.2014.958407
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100:3983-88; PMID:12629218; https://doi.org/10.1073/pnas.0530291100
  • Achouri Y, Noël G, Van Schaftingen E. 2-keto-4-methylthiobutyrate, an intermediate in the methionine salvage pathway, is a good substrate for CtBP1. Biochem Biophys Res Commun 2007; 352:903-6; PMID:17157814; https://doi.org/10.1016/j.bbrc.2006.11.111
  • Hilbert BJ, Morris BL, Ellis KC, Paulsen JL, Schiffer CA, Grossman SR, Royer WE, Jr. Structure-guided design of a high affinity inhibitor to human CtBP. ACS Chem Biol 2015; 10:1118-1127; PMID:25636004; https://doi.org/10.1021/cb500820b
  • Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M. Methionine salvage and S-adenosylmethionine: Essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 2013; 451:145-54; PMID:23535167; https://doi.org/10.1042/BJ20121744
  • Tang B, Kadariya Y, Murphy ME, Kruger WD. The methionine salvage pathway compound 4-methylthio-2-oxobutanate causes apoptosis independent of down-regulation of ornithine decarboxylase. Biochem Pharmacol 2006; 72:806-15; PMID:16870157; https://doi.org/10.1016/j.bcp.2006.06.018
  • Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-myc. Proc Nat Acad Sci 1993; 90:7804-08; PMID:8356088; https://doi.org/10.1073/pnas.90.16.7804
  • Straza MW, Paliwal S, Koi RC, Rajeshkumar B, Trenh P, Parker D, Whalen GF, Lyle S, Schiffer CA, Grossman SR. Therapeutic targeting of C-terminal binding protein in human cancer. Cell Cycle 2010; 9:3740-50; PMID:20930544; https://doi.org/10.4161/cc.9.18.12936
  • Li M, Riddle S, Zhang H, D'Alessandro A, Flockton A, Serkova NJ, Hansen KC, Moldvan R, McKeon BA, Frid M, et al. Metabolic reprogramming regulates the proliferative and inflammatory phenotype of adventitial fibroblasts in pulmonary hypertension through the transcriptional corepressor C-terminal binding protein-1. Circulation 2016; 134:1105-21; PMID:27562971; https://doi.org/10.1161/CIRCULATIONAHA.116.023171
  • Hilbert BJ, Grossman SR, Schiffer CA, Royer WE, Jr. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design. FEBS Lett 2014; 588:1743-48; PMID:24657618; https://doi.org/10.1016/j.febslet.2014.03.026
  • Korwar S, Morris BL, Parikh HI, Coover RA, Doughty TW, Love IM, Hilbert BJ, Royer Jr. WE, Kellogg GE, Grossman SR, Ellis KC. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal binding protein (CtBP). Bioorg Med Chem 2016; 24:2707-15; PMID:27156192; https://doi.org/10.1016/j.bmc.2016.04.037
  • Alvarez JA, Gelpí JL, Johnsen K, Bernard N, Delcour J, Clarke AR, Holbrook JJ, Cortés A. D-2-hydroxy-4-methylvalerate dehydrogenase from lactobacillus delbrueckii subsp. bulgaricus? I. kinetic mechanism and pH dependence of kinetic parameters, coenzyme binding and substrate inhibition. Eur J Biochem 1997; 244:203-12; PMID:9063465; https://doi.org/10.1111/j.1432-1033.1997.00203.x
  • Gao M, Cheng K, Yin H. Targeting protein-protein interfaces using macrocyclic peptides. Biopolymers 2015; 104:310-6; PMID:25664609; https://doi.org/10.1002/bip.22625
  • Birts CN, Nijjar SK, Mardle CA, Hoakwie F, Duriez PJ, Blaydes JP, Tavassoli A. A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem Sci 2013; 4:3046-57; https://doi.org/10.1039/c3sc50481f
  • Blevins MA, Kouznetsova J, Krueger AB, King R, Griner LM, Hu X, Southall N, Marugan JJ, Zhang Q, Ferrer M, Zhao R. Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression. J Biomol Screen 2015; 20:663-672; PMID:25477201; https://doi.org/10.1177/1087057114561400
  • Yang Y, Yang WS, Yu T, Yi Y, Park JG, Jeong D, Kim JH, Oh JS, Yoon K, Kim J, Cho JY. Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases. Biochem Pharmacol 2014; 88:201-15; PMID:24468133; https://doi.org/10.1016/j.bcp.2014.01.022
  • Dulyaninova NG, Hite KM, Zencheck WD, Scudiero DA, Almo SC, Shoemaker RH, Bresnick AR. Cysteine 81 is critical for the interaction of S100A4 and myosin-IIA. Biochemistry 2011; 50:7218-27; PMID:21749055; https://doi.org/10.1021/bi200853y
  • Larsson DE, Wickstrom M, Hassan S, Oberg K, Granberg D. The cytotoxic agents NSC-95397, brefeldin A, bortezomib and sanguinarine induce apoptosis in neuroendocrine tumors in vitro. Anticancer Res 2010; 30:149-56; PMID:20150630
  • Vogt A, McDonald PR, Tamewitz A, Sikorski RP, Wipf P, Skoko JJ, Lazo JS 3rd. A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol Cancer Ther 2008; 7:330-40; PMID:18245669; https://doi.org/10.1158/1535-7163.MCT-07-2165
  • Zhang C, Gao C, Xu Y, Zhang Z. CtBP2 could promote prostate cancer cell proliferation through c-myc signaling. Gene 2014; 546:73-9; PMID:24835310; https://doi.org/10.1016/j.gene.2014.05.032
  • Liu B, Di G. C-terminal binding protein is involved in promoting to the carcinogenesis of human glioma. Mol Neurobiol 2016; PMID:27699603; https://doi.org/10.1007/s12035-016-0159-x