2,533
Views
31
CrossRef citations to date
0
Altmetric
Review

Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack

, , , , , , & show all
Pages 451-469 | Received 25 Jan 2017, Accepted 23 Apr 2017, Published online: 22 Jun 2017

References

  • Atrash S, Makhoul I, Mizell JS, Hutchins L, Mahmoud F. Response of metastatic mucosal melanoma to immunotherapy: It can get worse before it gets better. J Oncol Pharm Pract 2017 Apr; 23(3):215-219; PMID:26811403; https://doi.org/10.1177/1078155215627503
  • Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8):711-23; PMID:20525992; https://doi.org/10.1056/NEJMoa1003466
  • Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384(9948):1109-17; PMID:25034862; https://doi.org/10.1016/S0140-6736(14)60958-2
  • Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 2015; 33(17):1889-94; PMID:25667295; https://doi.org/10.1200/JCO.2014.56.2736
  • Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015; 16(4):375-84; PMID:25795410; https://doi.org/10.1016/S1470-2045(15)70076-8
  • Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1):23-34; PMID:26027431; https://doi.org/10.1056/NEJMoa1504030
  • Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer 2016; 16(2):121-6; PMID:26822578; https://doi.org/10.1038/nrc.2016.2
  • O'Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 2017; 52:71-81; PMID:27951441; https://doi.org/10.1016/j.ctrv.2016.11.007
  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26):2443-54; PMID:22658127; https://doi.org/10.1056/NEJMoa1200690
  • Igney FH, Krammer PH. Immune escape of tumors: Apoptosis resistance and tumor counterattack. J Leukoc Biol 2002; 71(6):907-20; PMID:12050175
  • Schwarz BA, Bhandoola A. Trafficking from the bone marrow to the thymus: A prerequisite for thymopoiesis. Immunol Rev 2006; 209:47-57; PMID:16448533; https://doi.org/10.1111/j.0105-2896.2006.00350.x
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12(4):265-77; PMID:22437871; https://doi.org/10.1038/nrc3258
  • Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 2014; 10(11):3270-85; PMID:25625930; https://doi.org/10.4161/21645515.2014.979640
  • Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, Patterson JW, Slingluff CL Jr. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 2012; 72(5):1070-80; PMID:22266112; https://doi.org/10.1158/0008-5472.CAN-11-3218
  • Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 2009; 69(7):3077-85; PMID:19293190; https://doi.org/10.1158/0008-5472.CAN-08-2281
  • Kelderman S, Schumacher TN, Haanen JB. Acquired and intrinsic resistance in cancer immunotherapy. Mol Oncol 2014; 8(6):1132-9; PMID:25106088; https://doi.org/10.1016/j.molonc.2014.07.011
  • Ferguson AR, Engelhard VH. CD8 T cells activated in distinct lymphoid organs differentially express adhesion proteins and coexpress multiple chemokine receptors. J Immunol 2010; 184(8):4079-86; PMID:20212096; https://doi.org/10.4049/jimmunol.0901903
  • Sheasley-O'Neill SL, Brinkman CC, Ferguson AR, Dispenza MC, Engelhard VH. Dendritic cell immunization route determines integrin expression and lymphoid and nonlymphoid tissue distribution of CD8 T cells. J Immunol 2007; 178(3):1512-22; PMID:17237400; https://doi.org/10.4049/jimmunol.178.3.1512
  • Salerno EP, Olson WC, McSkimming C, Shea S, Slingluff CL Jr. T cells in the human metastatic melanoma microenvironment express site-specific homing receptors and retention integrins. Int J Cancer 2014; 134(3):563-74; PMID:23873187; https://doi.org/10.1002/ijc.28391
  • Gajewski TF, Louahed J, Brichard VG. Gene signature in melanoma associated with clinical activity: A potential clue to unlock cancer immunotherapy. Cancer J 2010; 16(4):399-403; PMID:20693853; https://doi.org/10.1097/PPO.0b013e3181eacbd8
  • Weiss GR, Grosh WW, Chianese-Bullock KA, Zhao Y, Liu H, Slingluff CL Jr, Marincola FM, Wang E. Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res 2011; 17(23):7440-50; PMID:21976537; https://doi.org/10.1158/1078-0432.CCR-11-1650
  • Garrido F, Cabrera T, Aptsiauri N. “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: Implications for immunotherapy. Int J Cancer 2010; 127(2):249-56; PMID:20178101; https://doi.org/10.1002/ijc.25270
  • Fruci D, Benevolo M, Cifaldi L, Lorenzi S, Lo Monaco E, Tremante E, Giacomini P. Major histocompatibility complex class i and tumour immuno-evasion: How to fool T cells and natural killer cells at one time. Curr Oncol 2012; 19(1):39-41; PMID:22328841; https://doi.org/10.3747/co.19.945
  • Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ. How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol 1998; 10(5):581-7; PMID:9794837; https://doi.org/10.1016/S0952-7915(98)80227-6
  • Jazirehi AR, Arle D. Epigenetic regulation of the TRAIL/Apo2L apoptotic pathway by histone deacetylase inhibitors: An attractive approach to bypass melanoma immunotherapy resistance. Am J Clin Exp Immunol 2013; 2(1):55-74; PMID:23885325
  • Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 2000; 32(11-12):1123-36; PMID:11137452; https://doi.org/10.1016/S1357-2725(00)00048-0
  • Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000; 12(6):611-20; PMID:10894161; https://doi.org/10.1016/S1074-7613(00)80212-5
  • Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (fas/APO-1) death–inducing signaling complex. Cell 1996; 85(6):817-27; PMID:8681377; https://doi.org/10.1016/S0092-8674(00)81266-0
  • Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J, Krammer PH, Walczak H. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000; 12(6):599-609; PMID:10894160; https://doi.org/10.1016/S1074-7613(00)80211-3
  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/fas) signaling pathways. EMBO J 1998; 17(6):1675-87; PMID:9501089; https://doi.org/10.1093/emboj/17.6.1675
  • Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2001; 2(1):63-7; PMID:11413467; https://doi.org/10.1038/35048069
  • Zamzami N, Kroemer G. The mitochondrion in apoptosis: How pandora's box opens. Nat Rev Mol Cell Biol 2001; 2(1):67-71; PMID:11413468; https://doi.org/10.1038/35048073
  • van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H. Decreased tumor surveillance in perforin-deficient mice. J Exp Med 1996; 184(5):1781-90; PMID:8920866; https://doi.org/10.1084/jem.184.5.1781
  • Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369(6475):31-7; PMID:8164737; https://doi.org/10.1038/369031a0
  • Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 1994; 76(6):977-87; PMID:8137431; https://doi.org/10.1016/0092-8674(94)90376-X
  • Medema JP, Toes RE, Scaffidi C, Zheng TS, Flavell RA, Melief CJ, Peter ME, Offringa R, Krammer PH. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur J Immunol 1997; 27(12):3492-8; PMID:9464839; https://doi.org/10.1002/eji.1830271250
  • Heibein JA, Goping IS, Barry M, Pinkoski MJ, Shore GC, Green DR, Bleackley RC. Granzyme B-mediated cytochrome c release is regulated by the bcl-2 family members bid and bax. J Exp Med 2000; 192(10):1391-402; PMID:11085742; https://doi.org/10.1084/jem.192.10.1391
  • Kubica AW, Brewer JD. Melanoma in immunosuppressed patients. Mayo Clin Proc 2012; 87(10):991-1003; PMID:23036673; https://doi.org/10.1016/j.mayocp.2012.04.018
  • Akbar AN, Fletcher JM. Memory T cell homeostasis and senescence during aging. Curr Opin Immunol 2005; 17(5):480-5; PMID:16098721; https://doi.org/10.1016/j.coi.2005.07.019
  • Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, Nikolich-Zugich J. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med 2004; 200(10):1347-58; PMID:15545358; https://doi.org/10.1084/jem.20040437
  • Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 2016; 6(8):827-37; PMID:27301722; https://doi.org/10.1158/2159-8290.CD-15-1545
  • Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499(7457):214-8; PMID:23770567; https://doi.org/10.1038/nature12213
  • Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature 2001; 411(6835):380-4; PMID:11357146; https://doi.org/10.1038/35077246
  • Houghton AN, Gold JS, Blachere NE. Immunity against cancer: Lessons learned from melanoma. Curr Opin Immunol 2001; 13(2):134-40; PMID:11228404; https://doi.org/10.1016/S0952-7915(00)00195-3
  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999; 5(6):677-85; PMID:10371507; https://doi.org/10.1038/9525
  • Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, Holt RA. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 2014; 24(5):743-50; PMID:24782321; https://doi.org/10.1101/gr.165985.113
  • Champiat S, Ferte C, Lebel-Binay S, Eggermont A, Soria JC. Exomics and immunogenics: Bridging mutational load and immune checkpoints efficacy. Oncoimmunology 2014; 3(1):e27817; PMID:24605269; https://doi.org/10.4161/onci.27817
  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature 2013; 500(7463):415-21; PMID:23945592; https://doi.org/10.1038/nature12477
  • Aris M, Barrio MM, Mordoh J. Lessons from cancer immunoediting in cutaneous melanoma. Clin Dev Immunol 2012; 2012:192719; PMID:22924051; https://doi.org/10.1155/2012/192719
  • Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007; 121(1):1-14; PMID:17386080; https://doi.org/10.1111/j.1365-2567.2007.02587.x
  • Vesely MD, Schreiber RD. Cancer immunoediting: Antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci 2013; 1284:1-5; PMID:23651186; https://doi.org/10.1111/nyas.12105
  • Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, Robbins P, Parmiani G, Storkus WJ, Lotze MT. Tumor escape from immune recognition: Lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/melan-A antigen. J Clin Invest 1996; 98(7):1633-41; PMID:8833913; https://doi.org/10.1172/JCI118958
  • Stackpole CW, Cremona P, Leonard C, Stremmel P. Antigenic modulation as a mechanism for tumor escape from immune destruction: Identification of modulation-positive and modulation-negative mouse lymphomas with xenoantisera to murine leukemia virus gp70. J Immunol 1980; 125(4):1715-23; PMID:6251136
  • Ellis LM, Hicklin DJ. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat Rev Cancer 2008; 8(8):579-91; PMID:18596824; https://doi.org/10.1038/nrc2403
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4):252-64; PMID:22437870; https://doi.org/10.1038/nrc3239
  • Yaguchi T, Goto Y, Kido K, Mochimaru H, Sakurai T, Tsukamoto N, Kudo-Saito C, Fujita T, Sumimoto H, Kawakami Y. Immune suppression and resistance mediated by constitutive activation of wnt/beta-catenin signaling in human melanoma cells. J Immunol 2012; 189(5):2110-7; PMID:22815287; https://doi.org/10.4049/jimmunol.1102282
  • Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 2015; 523(7559):231-5; PMID:25970248; https://doi.org/10.1038/nature14404
  • Shin DS, Zaretsky JM, Escuin-Ordinas H, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 2017; 7(2):188-201; PMID:27903500; https://doi.org/10.1158/2159-8290.CD-16-1223
  • Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6(11):836-48; PMID:17063185; https://doi.org/10.1038/nri1961
  • Dunn GP, Ikeda H, Bruce AT, Koebel C, Uppaluri R, Bui J, Chan R, Diamond M, White JM, Sheehan KC, et al. Interferon-gamma and cancer immunoediting. Immunol Res 2005; 32(1-3):231-45; PMID:16106075; https://doi.org/10.1385/IR:32:1-3:231
  • Shtivelman E, Davies MQ, Hwu P, Yang J, Lotem M, Oren M, Flaherty KT, Fisher DE. Pathways and therapeutic targets in melanoma. Oncotarget 2014; 5(7):1701-52; PMID:24743024; https://doi.org/10.18632/oncotarget.1892
  • Sengupta D, Byrum SD, Avaritt NL, Davis L, Shields B, Mahmoud F, Reynolds M, Orr LM, Mackintosh SG, Shalin SC, et al. Quantitative histone mass spectrometry identifies elevated histone H3 lysine 27 (Lys27) trimethylation in melanoma. Mol Cell Proteomics 2016; 15(3):765-75; PMID:26621846; https://doi.org/10.1074/mcp.M115.053363
  • Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC, Tackett AJ. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther 2016; 2:17(6):579-91; https://doi.org/10.1080/15384047.2016.1167291
  • Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 2015; 527(7577):249-53; PMID:26503055; https://doi.org/10.1038/nature15520
  • Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 1996; 77(7):1303-10; PMID:8608507; https://doi.org/10.1002/(SICI)1097-0142(19960401)77:7%3c1303::AID-CNCR12%3e3.3.CO;2-0 10.1002/(SICI)1097-0142(19960401)77:7%3c1303::AID-CNCR12%3e3.0.CO;2-5
  • Besser MJ, Shapira-Frommer R, Itzhaki O, Treves AJ, Zippel DB, Levy D, Kubi A, Shoshani N, Zikich D, Ohayon Y, et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res 2013; 19(17):4792-800; PMID:23690483; https://doi.org/10.1158/1078-0432.CCR-13-0380
  • Besser MJ. Is there a future for adoptive cell transfer in melanoma patients? Oncoimmunology 2013; 2(10):e26098; PMID:24353909; https://doi.org/10.4161/onci.26098
  • Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel RM. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 2001; 411(6841):1058-64; PMID:11429607; https://doi.org/10.1038/35082583
  • Wick M, Dubey P, Koeppen H, Siegel CT, Fields PE, Chen L, Bluestone JA, Schreiber H. Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy. J Exp Med 1997; 186(2):229-38; PMID:9221752; https://doi.org/10.1084/jem.186.2.229
  • Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD, Allison JP. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014; 6(226):226ra32; PMID:24598590; https://doi.org/10.1126/scitranslmed.3008095
  • Yun S, Vincelette ND, Green MR, Wahner Hendrickson AE, Abraham I. Targeting immune checkpoints in unresectable metastatic cutaneous melanoma: A systematic review and meta-analysis of anti-CTLA-4 and anti-PD-1 agents trials. Cancer Med 2016; 5(7):1481-91; PMID:27167347; https://doi.org/10.1002/cam4.732
  • Yao S, Zhu Y, Zhu G, Augustine M, Zheng L, Goode DJ, Broadwater M, Ruff W, Flies S, Xu H, et al. B7-h2 is a costimulatory ligand for CD28 in human. Immunity 2011; 34(5):729-40; PMID:21530327; https://doi.org/10.1016/j.immuni.2011.03.014
  • Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009; 206(8):1717-25; PMID:19581407; https://doi.org/10.1084/jem.20082492
  • Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Falà F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito L, et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer 2005; 117(4):538-50; PMID:15912538; https://doi.org/10.1002/ijc.21155
  • Shah KV, Chien AJ, Yee C, Moon RT. CTLA-4 is a direct target of wnt/beta-catenin signaling and is expressed in human melanoma tumors. J Invest Dermatol 2008; 128(12):2870-9; PMID:18563180; https://doi.org/10.1038/jid.2008.170
  • Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 2016; 167(2):397-404.e9; PMID:27667683; https://doi.org/10.1016/j.cell.2016.08.069
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4):252-64; PMID:22437870; https://doi.org/10.1038/nrc3239
  • Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, Cucolo L, et al. Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell 2016; 167(6):1540-1554.e12; https://doi.org/10.1016/j.cell.2016.11.022
  • Buferne M, Chasson L, Grange M, Mas A, Arnoux F, Bertuzzi M, Naquet P, Leserman L, Schmitt-Verhulst AM, Auphan-Anezin N. IFNgamma producing CD8 T cells modified to resist major immune checkpoints induce regression of MHC class I-deficient melanomas. Oncoimmunology 2015; 4(2):e974959; PMID:25949872; https://doi.org/10.4161/2162402X.2014.974959
  • Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016; 375(9):819-29; PMID:27433843; https://doi.org/10.1056/NEJMoa1604958
  • Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005; 438(7070):967-74; PMID:16355214; https://doi.org/10.1038/nature04483
  • Ott PA, Hodi FS, Buchbinder EI. Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: An overview of rationale, preclinical evidence, and initial clinical data. Front Oncol 2015; 5:202; PMID:26442214; https://doi.org/10.3389/fonc.2015.00202
  • Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015; 212(2):139-48; PMID:25601652; https://doi.org/10.1084/jem.20140559
  • Geissmann F, Revy P, Regnault A, Lepelletier Y, Dy M, Brousse N, Amigorena S, Hermine O, Durandy A. TGF-beta 1 prevents the noncognate maturation of human dendritic langerhans cells. J Immunol 1999; 162(8):4567-75; PMID:10201996
  • Pickup MW, Laklai H, Acerbi I, Owens P, Gorska AE, Chytil A, Aakre M, Weaver VM, Moses HL. Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-beta-deficient mouse mammary carcinomas. Cancer Res 2013; 73(17):5336-46; PMID:23856251; https://doi.org/10.1158/0008-5472.CAN-13-0012
  • Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999; 93(5):1634-42; PMID:10029592
  • Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J Clin Invest 2015; 125(9):3356-64; PMID:26168215; https://doi.org/10.1172/JCI80005
  • Ortiz ML, Kumar V, Martner A, Mony S, Donthireddy L, Condamine T, Seykora J, Knight SC, Malietzis G, Lee GH, et al. Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17-producing CD4+ T cells. J Exp Med 2015; 212(3):351-67; PMID:25667306; https://doi.org/10.1084/jem.20140835
  • Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 2006; 116(9):2423-33; PMID:16955142; https://doi.org/10.1172/JCI28941
  • Sim GC, Martin-Orozco N, Jin L, Yang Y, Wu S, Washington E, Sanders D, Lacey C, Wang Y, Vence L, et al. IL-2 therapy promotes suppressive ICOS+ treg expansion in melanoma patients. J Clin Invest 2014; 124(1):99-110; PMID:24292706; https://doi.org/10.1172/JCI46266
  • Jordan KR, Amaria RN, Ramirez O, Callihan EB, Gao D, Borakove M, Manthey E, Borges VF, McCarter MD. Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother 2013; 62(11):1711-22; PMID:24072401; https://doi.org/10.1007/s00262-013-1475-x
  • Weide B, Martens A, Zelba H, Stutz C, Derhovanessian E, Di Giacomo AM, Maio M, Sucker A, Schilling B, Schadendorf D, et al. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: Comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin Cancer Res 2014; 20(6):1601-9; PMID:24323899; https://doi.org/10.1158/1078-0432.CCR-13-2508
  • Mok S, Koya RC, Tsui C, Xu J, Robert L, Wu L, Graeber TG, West BL, Bollag G, Ribas A. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res 2014; 74(1):153-61; PMID:24247719; https://doi.org/10.1158/0008-5472.CAN-13-1816
  • Chouaib S, Asselin-Paturel C, Mami-Chouaib F, Caignard A, Blay JY. The host-tumor immune conflict: From immunosuppression to resistance and destruction. Immunol Today 1997; 18(10):493-7; PMID:9357142; https://doi.org/10.1016/S0167-5699(97)01115-8
  • Munn DH. Blocking IDO activity to enhance anti-tumor immunity. Front Biosci (Elite Ed) 2012; 4:734-45; PMID:22201909; https://doi.org/10.2741/e414
  • Munn DH. Indoleamine 2,3-dioxygenase, tregs and cancer. Curr Med Chem 2011; 18(15):2240-6; PMID:21517755; https://doi.org/10.2174/092986711795656045
  • Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996; 2(10):1096-103; PMID:8837607; https://doi.org/10.1038/nm1096-1096
  • Plescia OJ, Grinwich K, Plescia AM. Subversive activity of syngeneic tumor cells as an escape mechanism from immune surveillance and the role of prostaglandins. Ann N Y Acad Sci 1976; 276:455-65; PMID:1071971; https://doi.org/10.1111/j.1749-6632.1976.tb41670.x
  • Matsuda M, Salazar F, Petersson M, Masucci G, Hansson J, Pisa P, Zhang QJ, Masucci MG, Kiessling R. Interleukin 10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells and downregulates HLA class I expression. J Exp Med 1994; 180(6):2371-6; PMID:7964510; https://doi.org/10.1084/jem.180.6.2371
  • McKallip R, Li R, Ladisch S. Tumor gangliosides inhibit the tumor-specific immune response. J Immunol 1999; 163(7):3718-26; PMID:10490967
  • Takahashi K, Ono K, Hirabayashi Y, Taniguchi M. Escape mechanisms of melanoma from immune system by soluble melanoma antigen. J Immunol 1988; 140(9):3244-8; PMID:2452202
  • Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 1996; 88(2):100-8; PMID:8537970; https://doi.org/10.1093/jnci/88.2.100
  • Rotem-Yehudar R, Groettrup M, Soza A, Kloetzel PM, Ehrlich R. LMP-associated proteolytic activities and TAP-dependent peptide transport for class 1 MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12. J Exp Med 1996; 183(2):499-514; PMID:8627162; https://doi.org/10.1084/jem.183.2.499
  • Dissemond J, Kothen T, Mors J, Weimann TK, Lindeke A, Goos M, Wagner SN. Downregulation of tapasin expression in progressive human malignant melanoma. Arch Dermatol Res 2003; 295(2):43-9; PMID:12682852; https://doi.org/10.1007/s00403-003-0393-8
  • Chang CC, Pirozzi G, Wen SH, Chung IH, Chiu BL, Errico S, Luongo M, Lombardi ML. Ferrone S multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy. J Biol Chem 2015; 290(44):26562-75; PMID:26381407; https://doi.org/10.1074/jbc.M115.676130
  • Hicklin DJ, Marincola FM, Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 1999; 5(4):178-86; PMID:10203751; https://doi.org/10.1016/S1357-4310(99)01451-3
  • Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S. Beta2-microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 1998; 101(12):2720-9; PMID:9637706; https://doi.org/10.1172/JCI498
  • Seung S, Urban JL, Schreiber H. A tumor escape variant that has lost one major histocompatibility complex class I restriction element induces specific CD8+ T cells to an antigen that no longer serves as a target. J Exp Med 1993; 178(3):933-40; PMID:8394406; https://doi.org/10.1084/jem.178.3.933
  • Arce-Gomez B, Jones EA, Barnstable CJ, Solomon E, Bodmer WF. The genetic control of HLA-A and B antigens in somatic cell hybrids: Requirement for beta2 microglobulin. Tissue Antigens 1978; 11(2):96-112; PMID:77067; https://doi.org/10.1111/j.1399-0039.1978.tb01233.x
  • Aptsiauri N, Carretero R, Garcia-Lora A, Real LM, Cabrera T, Garrido F. Regressing and progressing metastatic lesions: Resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunol Immunother 2008; 57(11):1727-33; PMID:18491093; https://doi.org/10.1007/s00262-008-0532-3
  • Porgador A, Mandelboim O, Restifo NP, Strominger JL. Natural killer cell lines kill autologous beta2-microglobulin-deficient melanoma cells: Implications for cancer immunotherapy. Proc Natl Acad Sci U S A 1997; 94(24):13140-5; PMID:9371813; https://doi.org/10.1073/pnas.94.24.13140
  • Farrell HE, Vally H, Lynch DM, Fleming P, Shellam GR, Scalzo AA, Davis-Poynter NJ. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 1997; 386(6624):510-4; PMID:9087412; https://doi.org/10.1038/386510a0
  • Cretney E, Degli-Esposti MA, Densley EH, Farrell HE, Davis-Poynter NJ, Smyth MJ. m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. J Exp Med 1999; 190(3):435-44; PMID:10430631; https://doi.org/10.1084/jem.190.3.435
  • del Campo AB, Kyte JA, Carretero J, Zinchencko S, Méndez R, González-Aseguinolaza G, Ruiz-Cabello F, Aamdal S, Gaudernack G, Garrido F, et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 2014; 134(1):102-13; PMID:23784959; https://doi.org/10.1002/ijc.28338
  • Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 2005; 174(3):1462-71; PMID:15661905; https://doi.org/10.4049/jimmunol.174.3.1462
  • Bernal M, Ruiz-Cabello F, Concha A, Paschen A, Garrido F. Implication of the beta2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol Immunother 2012; 61(9):1359-71; PMID:22833104; https://doi.org/10.1007/s00262-012-1321-6
  • Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, López-Nevot MA, Garrido F. Frequent loss of heterozygosity in the beta2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics 2011; 63(2):65-71; PMID:21086121; https://doi.org/10.1007/s00251-010-0494-4
  • Woods K, Pasam A, Jayachandran A, Andrews MC, Cebon J. Effects of epithelial to mesenchymal transition on T cell targeting of melanoma cells. Front Oncol 2014; 4:367; PMID:25566505; https://doi.org/10.3389/fonc.2014.00367
  • Behren A, Anaka M, Lo PH, Vella LJ, Davis ID, Catimel J, Cardwell T, Gedye C, Hudson C, Stan R, et al. The ludwig institute for cancer research melbourne melanoma cell line panel. Pigment Cell Melanoma Res 2013; 26(4):597-600; PMID:23527996; https://doi.org/10.1111/pcmr.12097
  • Jayachandran A, Anaka M, Prithviraj P, Hudson C, McKeown SJ, Lo PH, Vella LJ, Goding CR, Cebon J, Behren A. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 2014; 5(14):5782-97; PMID:25051363; https://doi.org/10.18632/oncotarget.2164
  • Hoek KS, Eichhoff OM, Schlegel NC, Döbbeling U, Kobert N, Schaerer L, Hemmi S, Dummer R. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 2008; 68(3):650-6; PMID:18245463; https://doi.org/10.1158/0008-5472.CAN-07-2491
  • Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, Weber BL, Nathanson KL, Phillips DJ, Herlyn M, et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 2006; 19(4):290-302; PMID:16827748; https://doi.org/10.1111/j.1600-0749.2006.00322.x
  • Verfaillie A, Imrichova H, Atak ZK, Dewaele M, Rambow F, Hulselmans G, Christiaens V, Svetlichnyy D, Luciani F, Van den Mooter L, et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun 2015; 6:6683; PMID:25865119; https://doi.org/10.1038/ncomms7683
  • Hsiao JJ, Fisher DE. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys 2014; 563:28-34; PMID:25111671; https://doi.org/10.1016/j.abb.2014.07.019
  • Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wölfel T, Hölzel M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 2012; 490(7420):412-6; PMID:23051752; https://doi.org/10.1038/nature11538
  • Almanzar G, Olkhanud PB, Bodogai M, Dell'agnola C, Baatar D, Hewitt SM, Ghimenton C, Tummala MK, Weeraratna AT, Hoek KS, et al. Sperm-derived SPANX-B is a clinically relevant tumor antigen that is expressed in human tumors and readily recognized by human CD4+ and CD8+ T cells. Clin Cancer Res 2009; 15(6):1954-63; PMID:19276289; https://doi.org/10.1158/1078-0432.CCR-08-1290
  • Westbrook VA, Schoppee PD, Diekman AB, Klotz KL, Allietta M, Hogan KT, Slingluff CL, Patterson JW, Frierson HF, Irvin WP Jr, et al. Genomic organization, incidence, and localization of the SPAN-x family of cancer-testis antigens in melanoma tumors and cell lines. Clin Cancer Res 2004; 10(1 Pt 1):101-12; PMID:14734458; https://doi.org/10.1158/1078-0432.CCR-0647-3
  • Kohlmeyer J, Cron M, Landsberg J, Bald T, Renn M, Mikus S, Bondong S, Wikasari D, Gaffal E, Hartmann G, et al. Complete regression of advanced primary and metastatic mouse melanomas following combination chemoimmunotherapy. Cancer Res 2009; 69(15):6265-74; PMID:19622767; https://doi.org/10.1158/0008-5472.CAN-09-0579
  • Eggermont AM, Suciu S, Testori A, Kruit WH, Marsden J, Punt CJ, Santinami M, Salès F, Schadendorf D, Patel P, et al. Ulceration and stage are predictive of interferon efficacy in melanoma: Results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur J Cancer 2012; 48(2):218-25; PMID:22056637; https://doi.org/10.1016/j.ejca.2011.09.028
  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schröter M, Burns K, Mattmann C, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388(6638):190-5; PMID:9217161; https://doi.org/10.1038/40657
  • Kataoka T, Schroter M, Hahne M, Schneider P, Irmler M, Thome M, Froelich CJ, Tschopp J. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 1998; 161(8):3936-42; PMID:9780161
  • Krueger A, Baumann S, Krammer PH, Kirchhoff S. FLICE-inhibitory proteins: Regulators of death receptor-mediated apoptosis. Mol Cell Biol 2001; 21(24):8247-54; PMID:11713262; https://doi.org/10.1128/MCB.21.24.8247-8254.2001
  • Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998; 161(6):2833-40; PMID:9743343
  • Deveraux QL, Reed JC. IAP family proteins–suppressors of apoptosis. Genes Dev 1999; 13(3):239-52; PMID:9990849; https://doi.org/10.1101/gad.13.3.239
  • Bullani RR, Huard B, Viard-Leveugle I, Byers HR, Irmler M, Saurat JH, Tschopp J, French LE. Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 2001; 117(2):360-4; PMID:11511316; https://doi.org/10.1046/j.0022-202x.2001.01418.x
  • Keuling AM, Felton KE, Parker AA, Akbari M, Andrew SE, Tron VA. RNA silencing of mcl-1 enhances ABT-737-mediated apoptosis in melanoma: Role for a caspase-8-dependent pathway. PLoS One 2009; 4(8):e6651; PMID:19684859; https://doi.org/10.1371/journal.pone.0006651
  • Senft D, Berking C, Graf SA, Kammerbauer C, Ruzicka T, Besch R. Selective induction of cell death in melanoma cell lines through targeting of mcl-1 and A1. PLoS One 2012; 7(1):e30821; PMID:22292048; https://doi.org/10.1371/journal.pone.0030821
  • Jansen B, Schlagbauer-Wadl H, Eichler HG, Wolff K, van Elsas A, Schrier PI, Pehamberger H. Activated N-ras contributes to the chemoresistance of human melanoma in severe combined immunodeficiency (SCID) mice by blocking apoptosis. Cancer Res 1997; 57(3):362-5; PMID:9012455
  • Wroblewski D, Mijatov B, Mohana-Kumaran N, Lai F, Gallagher SJ, Haass NK, Zhang XD, Hersey P. The BH3-mimetic ABT-737 sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors but does not reverse acquired resistance. Carcinogenesis 2013; 34(2):237-47; PMID:23087082; https://doi.org/10.1093/carcin/bgs330
  • Anvekar RA, Asciolla JJ, Lopez-Rivera E, Floros KV, Izadmehr S, Elkholi R, Belbin G, Sikora AG, Chipuk JE. Sensitization to the mitochondrial pathway of apoptosis augments melanoma tumor cell responses to conventional chemotherapeutic regimens. Cell Death Dis 2012; 3:e420; PMID:23152056; https://doi.org/10.1038/cddis.2012.161
  • Bedikian AY, Millward M, Pehamberger H, Conry R, Gore M, Trefzer U, Pavlick AC, DeConti R, Hersh EM, Hersey P, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: The oblimersen melanoma study group. J Clin Oncol 2006; 24(29):4738-45; PMID:16966688; https://doi.org/10.1200/JCO.2006.06.0483
  • Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T, Hoermann M, Hollenstein U, Wolff K, Pehamberger H, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000; 356(9243):1728-33; PMID:11095261; https://doi.org/10.1016/S0140-6736(00)03207-4
  • Tang L, Tron VA, Reed JC, Mah KJ, Krajewska M, Li G, Zhou X, Ho VC, Trotter MJ. Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 1998; 4(8):1865-71; PMID:9717813
  • Zhai D, Jin C, Huang Z, Satterthwait AC, Reed JC. Differential regulation of bax and bak by anti-apoptotic bcl-2 family proteins bcl-B and mcl-1. J Biol Chem 2008; 283(15):9580-6; PMID:18178565; https://doi.org/10.1074/jbc.M708426200
  • Thallinger C, Wolschek MF, Wacheck V, Maierhofer H, Günsberg P, Polterauer P, Pehamberger H, Monia BP, Selzer E, Wolff K, et al. Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model. J Invest Dermatol 2003; 120(6):1081-6; PMID:12787138; https://doi.org/10.1046/j.1523-1747.2003.12252.x
  • Haass NK, Sproesser K, Nguyen TK, Contractor R, Medina CA, Nathanson KL, Herlyn M, Smalley KS. The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 2008; 14(1):230-9; PMID:18172275; https://doi.org/10.1158/1078-0432.CCR-07-1440
  • Wang YF, Jiang CC, Kiejda KA, Gillespie S, Zhang XD, Hersey P. Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the bcl-2 family members PUMA, bim, and mcl-1. Clin Cancer Res 2007; 13(16):4934-42; PMID:17652623; https://doi.org/10.1158/1078-0432.CCR-07-0665
  • Deveraux QL, Stennicke HR, Salvesen GS, Reed JC. Endogenous inhibitors of caspases. J Clin Immunol 1999; 19(6):388-98; PMID:10634212; https://doi.org/10.1023/A:1020502800208
  • Zhou J, Yuen NK, Zhan Q, Velazquez EF, Murphy GF, Giobbie-Hurder A, Hodi FS. Immunity to the melanoma inhibitor of apoptosis protein (ML-IAP; livin) in patients with malignant melanoma. Cancer Immunol Immunother 2012; 61(5):655-65; PMID:22033581; https://doi.org/10.1007/s00262-011-1124-1
  • Gong J, Chen N, Zhou Q, Yang B, Wang Y, Wang X. Melanoma inhibitor of apoptosis protein is expressed differentially in melanoma and melanocytic naevus, but similarly in primary and metastatic melanomas. J Clin Pathol 2005; 58(10):1081-5; PMID:16189155; https://doi.org/10.1136/jcp.2005.025817
  • Schimmer AD. Inhibitor of apoptosis proteins: Translating basic knowledge into clinical practice. Cancer Res 2004; 64(20):7183-90; PMID:15492230; https://doi.org/10.1158/0008-5472.CAN-04-1918
  • Liu T, Brouha B, Grossman D. Rapid induction of mitochondrial events and caspase-independent apoptosis in survivin-targeted melanoma cells. Oncogene 2004; 23(1):39-48; PMID:14712209; https://doi.org/10.1038/sj.onc.1206978
  • Grossman D, Kim PJ, Schechner JS, Altieri DC. Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci U S A 2001; 98(2):635-40; PMID:11149963; https://doi.org/10.1073/pnas.98.2.635
  • Vucic D, Deshayes K, Ackerly H, Pisabarro MT, Kadkhodayan S, Fairbrother WJ, Dixit VM. SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J Biol Chem 2002; 277(14):12275-9; PMID:11801603; https://doi.org/10.1074/jbc.M112045200
  • Vucic D, Fairbrother WJ. The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 2007; 13(20):5995-6000; PMID:17947460; https://doi.org/10.1158/1078-0432.CCR-07-0729
  • Huang Y, Rich RL, Myszka DG, Wu H. Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by smac. J Biol Chem 2003; 278(49):49517-22; PMID:14512414; https://doi.org/10.1074/jbc.M310061200
  • Vucic D, Franklin MC, Wallweber HJ, Das K, Eckelman BP, Shin H, Elliott LO, Kadkhodayan S, Deshayes K, Salvesen GS, et al. Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: Implications for smac-dependent anti-apoptotic activity of ML-IAP. Biochem J 2005; 385(Pt 1):11-20; PMID:15485396; https://doi.org/10.1042/BJ20041108
  • Schmollinger JC, Vonderheide RH, Hoar KM, Maecker B, Schultze JL, Hodi FS, Soiffer RJ, Jung K, Kuroda MJ, Letvin NL, et al. Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction. Proc Natl Acad Sci U S A 2003; 100(6):3398-403; PMID:12626761; https://doi.org/10.1073/pnas.0530311100
  • Yagihashi A, Asanuma K, Tsuji N, Torigoe T, Sato N, Hirata K, Watanabe N. Detection of anti-livin antibody in gastrointestinal cancer patients. Clin Chem 2003; 49(7):1206-8; PMID:12816927; https://doi.org/10.1373/49.7.1206
  • Yagihashi A, Asanuma K, Kobayashi D, Tsuji N, Shijubo Y, Abe S, Hirohashi Y, Torigoe T, Sato N, Watanabe N. Detection of autoantibodies to livin and survivin in sera from lung cancer patients. Lung Cancer 2005; 48(2):217-21; PMID:15829321; https://doi.org/10.1016/j.lungcan.2004.11.002
  • Yagihashi A, Ohmura T, Asanuma K, Kobayashi D, Tsuji N, Torigoe T, Sato N, Hirata K, Watanabe N. Detection of autoantibodies to survivin and livin in sera from patients with breast cancer. Clin Chim Acta 2005; 362(1-2):125-30; PMID:16026775; https://doi.org/10.1016/j.cccn.2005.06.009
  • Andersen MH, Reker S, Becker JC, thor Straten P. The melanoma inhibitor of apoptosis protein: A target for spontaneous cytotoxic T cell responses. J Invest Dermatol 2004; 122(2):392-9; PMID:15009721; https://doi.org/10.1046/j.0022-202X.2004.22242.x
  • Chang H, Schimmer AD. Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol Cancer Ther 2007; 6(1):24-30; PMID:17237263; https://doi.org/10.1158/1535-7163.MCT-06-0443
  • Bird CH, Sutton VR, Sun J, Hirst CE, Novak A, Kumar S, Trapani JA, Bird PI. Selective regulation of apoptosis: The cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the fas cell death pathway. Mol Cell Biol 1998; 18(11):6387-98; PMID:9774654; https://doi.org/10.1128/MCB.18.11.6387
  • Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A 2001; 98(20):11515-20; PMID:11562487; https://doi.org/10.1073/pnas.201398198
  • Cunningham TD, Jiang X, Shapiro DJ. Expression of high levels of human proteinase inhibitor 9 blocks both perforin/granzyme and fas/fas ligand-mediated cytotoxicity. Cell Immunol 2007; 245(1):32-41; PMID:17490628; https://doi.org/10.1016/j.cellimm.2007.03.004
  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, et al. Inactivation of the apoptosis effector apaf-1 in malignant melanoma. Nature 2001; 409(6817):207-11; PMID:11196646; https://doi.org/10.1038/35051606
  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, et al. Inactivation of the apoptosis effector apaf-1 in malignant melanoma. Nature 2001; 409(6817):207-11; PMID:11196646; https://doi.org/10.1038/35051606
  • Chan H, Bartos DP, Owen-Schaub LB. Activation-dependent transcriptional regulation of the human fas promoter requires NF-kappaB p50-p65 recruitment. Mol Cell Biol 1999; 19(3):2098-108; PMID:10022897; https://doi.org/10.1128/MCB.19.3.2098
  • Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E, et al. Wild-type human p53 and a temperature-sensitive mutant induce fas/APO-1 expression. Mol Cell Biol 1995; 15(6):3032-40; PMID:7539102; https://doi.org/10.1128/MCB.15.6.3032
  • Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients. Clin Cancer Res 2001; 7(5):1282-6; PMID:11350895
  • Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD. Protection from fas-mediated apoptosis by a soluble form of the fas molecule. Science 1994; 263(5154):1759-62; PMID:7510905; https://doi.org/10.1126/science.7510905
  • Mouawad R, Khayat D, Soubrane C. Plasma fas ligand, an inducer of apoptosis, and plasma soluble fas, an inhibitor of apoptosis, in advanced melanoma. Melanoma Res 2000; 10(5):461-7; PMID:11095407; https://doi.org/10.1097/00008390-200010000-00008
  • Ivanov VN, Bhoumik A, Ronai Z. Death receptors and melanoma resistance to apoptosis. Oncogene 2003; 22(20):3152-61; PMID:12789291; https://doi.org/10.1038/sj.onc.1206456
  • Shin MS, Park WS, Kim SY, Kim HS, Kang SJ, Song KY, Park JY, Dong SM, Pi JH, Oh RR, et al. Alterations of fas (apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol 1999; 154(6):1785-91; PMID:10362803; https://doi.org/10.1016/S0002-9440(10)65434-X
  • Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, et al. Melanoma cell expression of fas(apo-1/CD95) ligand: Implications for tumor immune escape. Science 1996; 274(5291):1363-6; PMID:8910274; https://doi.org/10.1126/science.274.5291.1363
  • O'Connell J, Bennett MW, Nally K, O'Sullivan GC, Collins JK, Shanahan F. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis. J Cell Physiol 2000; 185(3):331-8; PMID:11056003; https://doi.org/10.1002/1097-4652(200012)185:3%3c331::AID-JCP3%3e3.0.CO;2-V
  • Ekmekcioglu S, Okcu MF, Colome-Grimmer MI, Owen-Schaub L, Buzaid AC, Grimm EA. Differential increase of fas ligand expression on metastatic and thin or thick primary melanoma cells compared with interleukin-10. Melanoma Res 1999; 9(3):261-72; PMID:10465582; https://doi.org/10.1097/00008390-199906000-00008
  • Soubrane C, Mouawad R, Antoine EC, Verola O, Gil-Delgado M, Khayat D. A comparative study of fas and fas-ligand expression during melanoma progression. Br J Dermatol 2000; 143(2):307-12; PMID:10951137; https://doi.org/10.1046/j.1365-2133.2000.03655.x
  • Aragane Y, Maeda A, Cui CY, Tezuka T, Kaneda Y, Schwarz T. Inhibition of growth of melanoma cells by CD95 (fas/APO-1) gene transfer in vivo. J Invest Dermatol 2000; 115(6):1008-14; PMID:11121134; https://doi.org/10.1046/j.1523-1747.2000.00164.x
  • Arai H, Gordon D, Nabel EG, Nabel GJ. Gene transfer of fas ligand induces tumor regression in vivo. Proc Natl Acad Sci U S A 1997; 94(25):13862-7; PMID:9391118; https://doi.org/10.1073/pnas.94.25.13862
  • Zhang XY, Zhang XD, Borrow JM, Nguyen T, Hersey P. Translational control of tumor necrosis factor-related apoptosis-inducing ligand death receptor expression in melanoma cells. J Biol Chem 2004; 279(11):10606-14; PMID:14688276; https://doi.org/10.1074/jbc.M308211200
  • Zhang XD, Zhang XY, Gray CP, Nguyen T, Hersey P. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res 2001; 61(19):7339-48; PMID:11585775
  • Kurbanov BM, Fecker LF, Geilen CC, Sterry W, Eberle J. Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4. Oncogene 2007; 26(23):3364-77; PMID:17160022; https://doi.org/10.1038/sj.onc.1210134
  • Franco AV, Zhang XD, Van Berkel E, Sanders JE, Zhang XY, Thomas WD, Nguyen T, Hersey P. The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J Immunol 2001; 166(9):5337-45; PMID:11313369; https://doi.org/10.4049/jimmunol.166.9.5337
  • Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998; 161(6):2833-40; PMID:9743343
  • Krammer PH. CD95s deadly mission in the immune system. Nature 2000; 407(6805):789-95; PMID:11048730; https://doi.org/10.1038/35037728
  • Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2(6):420-30; PMID:12189384; https://doi.org/10.1038/nrc821
  • Thomas WD, Hersey P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 1998; 161(5):2195-200; PMID:9725211
  • Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC. Downregulation of bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 2004; 11(8):915-23; PMID:15118763; https://doi.org/10.1038/sj.cdd.4401416
  • Lillehammer T, Engesaeter BO, Prasmickaite L, Maelandsmo GM, Fodstad O, Engebraaten O. Combined treatment with ad-hTRAIL and DTIC or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines. J Gene Med 2007; 9(6):440-51; PMID:17410615; https://doi.org/10.1002/jgm.1036
  • Lee J, Hampl M, Albert P, Fine HA. Antitumor activity and prolonged expression from a TRAIL-expressing adenoviral vector. Neoplasia 2002; 4(4):312-23; PMID:12082547; https://doi.org/10.1038/sj.neo.7900245
  • Boyle GM, Martyn AC, Parsons PG. Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res 2005; 18(3):160-6; PMID:15892712; https://doi.org/10.1111/j.1600-0749.2005.00228.x
  • Krammer PH. The tumor strikes back: New data on expression of the CD95(APO-1/fas) receptor/ligand system may cause paradigm changes in our view on drug treatment and tumor immunology. Cell Death Differ 1997; 4(5):362-4; PMID:16465254; https://doi.org/10.1038/sj.cdd.4400252
  • Igney FH, Krammer PH. Tumor counterattack: Fact or fiction? Cancer Immunol Immunother 2005; 54(11):1127-36; PMID:15889255; https://doi.org/10.1007/s00262-005-0680-7
  • Igney FH, Behrens CK, Krammer PH. Tumor counterattack–concept and reality. Eur J Immunol 2000; 30(3):725-31; PMID:10741386; https://doi.org/10.1002/1521-4141(200003)30:3%3c725::AID-IMMU725%3e3.0.CO;2-D 10.1002/1521-4141(200003)30:3%3c725::AID-IMMU725%3e3.3.CO;2-4
  • French LE, Wilson A, Hahne M, Viard I, Tschopp J, MacDonald HR. Fas ligand expression is restricted to nonlymphoid thymic components in situ. J Immunol 1997; 159(5):2196-202; PMID:9278307
  • Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995; 270(5239):1189-92; PMID:7502042; https://doi.org/10.1126/science.270.5239.1189
  • Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 1997; 99(3):396-402; PMID:9022072; https://doi.org/10.1172/JCI119173
  • Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, et al. Immunity to cancer: Attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 2002; 188:97-113; PMID:12445284; https://doi.org/10.1034/j.1600-065X.2002.18809.x
  • Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 2002; 195(10):1303-16; PMID:12021310; https://doi.org/10.1084/jem.20011624
  • Seino K, Ogino T, Fukunaga K, Taniguchi H, Takada Y, Yuzawa K, Otsuka M, Yagita H, Okumura K, Fukao K. Attempts to reveal the mechanism of CD95-ligand-mediated inflammation. Transplant Proc 1999; 31(5):1942-3; PMID:10455926; https://doi.org/10.1016/S0041-1345(99)00219-5
  • Giovarelli M, Musiani P, Garotta G, Ebner R, Di Carlo E, Kim Y, Cappello P, Rigamonti L, Bernabei P, Novelli F, et al. A “stealth effect:” Adenocarcinoma cells engineered to express TRAIL elude tumor-specific and allogeneic T cell reactions. J Immunol 1999; 163(9):4886-93; PMID:10528190
  • Nakashima M, Sonoda K, Watanabe T. Inhibition of cell growth and induction of apoptotic cell death by the human tumor-associated antigen RCAS1. Nat Med 1999; 5(8):938-42; PMID:10426319; https://doi.org/10.1038/11383
  • Mellado M, de Ana AM, Moreno MC, Martinez C, Rodriguez-Frade JM. A potential immune escape mechanism by melanoma cells through the activation of chemokine-induced T cell death. Curr Biol 2001; 11(9):691-6; PMID:11369232; https://doi.org/10.1016/S0960-9822(01)00199-3
  • Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, Mitra D, Boni A, Newton LP, Liu C, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 2013; 19(5):1225-31; PMID:23307859; https://doi.org/10.1158/1078-0432.CCR-12-1630

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.