1,078
Views
10
CrossRef citations to date
0
Altmetric
Research Papers

IGF2 mRNA binding protein 3 (IMP3) mediated regulation of transcriptome and translatome in glioma cells

, , &
Pages 42-52 | Received 12 Apr 2017, Accepted 23 Apr 2017, Published online: 19 Dec 2017

References

  • Diederichs S, Bartsch L, Berkmann JC, Frose K, Heitmann J, Hoppe C, Iggena D, Jazmati D, Karschnia P, Linsenmeier M, et al. The dark matter of the cancer genome: Aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med 2016; 8:442-57; PMID: 26992833; https://doi.org/10.15252/emmm.201506055
  • St Laurent G, 3rd, Shtokalo D, Heydarian M, Palyanov A, Babiy D, Zhou J, Kumar A, Urcuqui-Inchima S. Insights from the HuR-interacting transcriptome: ncRNAs, Ubiquitin pathways, and patterns of secondary structure dependent RNA interactions. Mol Genet Genomics 2012; 287:867-79; PMID: 23052832; https://doi.org/10.1007/s00438-012-0722-8
  • Palanichamy JK, Tran TM, Howard JM, Contreras JR, Fernando TR, Sterne-Weiler T, Katzman S, Toloue M, Yan W, Basso G, et al. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation. J Clin Invest 2016; 126:1495-511; PMID: 26974154; https://doi.org/10.1172/JCI80046
  • Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M, Landthaler M, Rajewsky N. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 2011; 43:340-52; PMID: 21723171; https://doi.org/10.1016/j.molcel.2011.06.008
  • Wurth L, Gebauer F. RNA-binding proteins, multifaceted translational regulators in cancer. Biochim Biophys Acta 2015; 1849:881-6; PMID: 25316157; https://doi.org/10.1016/j.bbagrm.2014.10.001
  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global quantification of mammalian gene expression control. Nature 2011; 473:337-42; PMID: 21593866; https://doi.org/10.1038/nature10098
  • Kahvejian A, Svitkin YV, Sukarieh R, M'Boutchou MN, Sonenberg N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005; 19:104-13; PMID:15630022; https://doi.org/10.1101/gad.1262905
  • Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci 2013; 14:10015-41; PMID: 23665903; https://doi.org/10.3390/ijms140510015
  • Kobel M, Xu H, Bourne PA, Spaulding BO, Shih Ie M, Mao TL, Soslow RA, Ewanowich CA, Kalloger SE, Mehl E, et al. IGF2BP3 (IMP3) expression is a marker of unfavorable prognosis in ovarian carcinoma of clear cell subtype. Mod Pathol 2009; 22:469-75; PMID: 19136932; https://doi.org/10.1038/modpathol.2008.206
  • Xie C, Li Y, Li Q, Chen Y, Yao J, Yin G, Bi Q, O'Keefe RJ, Schwarz EM, Tyler W. Increased insulin mRNA binding Protein-3 expression correlates with vascular enhancement of renal cell carcinoma by intravenous Contrast-CT and is associated with bone metastasis. J Bone Oncol 2015; 4:69-76; PMID: 26478857; https://doi.org/10.1016/j.jbo.2015.07.001
  • Schaeffer DF, Owen DR, Lim HJ, Buczkowski AK, Chung SW, Scudamore CH, Huntsman DG, Ng SS, Owen DA. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival. BMC cancer 2010; 10:59; PMID: 20178612; https://doi.org/10.1186/1471-2407-10-59
  • Lin CY, Chen ST, Jeng YM, Yeh CC, Chou HY, Deng YT, Chang CC, Kuo MY. Insulin-like growth factor II mRNA-binding protein 3 expression promotes tumor formation and invasion and predicts poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med 2011; 40:699-705; PMID:23647076; https://doi.org/10.1111/j.1600-0714.2011.01019.x
  • Tantravahi SK, Albertson D, Agarwal AM, Ravulapati S, Poole A, Patel SB, Hawatmeh JS, Straubhar AM, Liu T, Stenehjem DD, et al. Survival outcomes and tumor IMP3 expression in patients with sarcomatoid metastatic renal cell carcinoma. J Oncol 2015; 2015:181926; PMID: 25688268; https://doi.org/10.1155/2015/181926
  • Kazeminezhad B, Mirafsharieh SA, Dinyari K, Azizi D, Ebrahimi A. Usefulness of insulin-like growth factor II mRNA-binding protein 3 (IMP3) as a new marker for the diagnosis of esophageal adenocarcinoma in challenging cases. Turk J Gastroenterol 2014; 25:253-6; PMID: 25141312; https://doi.org/10.5152/tjg.2014.5454
  • Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, Hüttelmaier S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression?. Cell Mol Life Sci 2013; 70:2657-75; PMID: 23069990; https://doi.org/10.1007/s00018-012-1186-z
  • Lederer M, Bley N, Schleifer C, Huttelmaier S. The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin Cancer Biol 2014; 29:3-12; PMID: 25068994; https://doi.org/10.1016/j.semcancer.2014.07.006
  • Suvasini R, Shruti B, Thota B, Shinde SV, Friedmann-Morvinski D, Nawaz Z, Prasanna KV, Thennarasu K, Hegde AS, Arivazhagan A, et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol Chem 2011; 286:25882-90; PMID: 21613208; https://doi.org/10.1074/jbc.M110.178012
  • Samanta S, Sun H, Goel HL, Pursell B, Chang C, Khan A, Greiner DL, Cao S, Lim E, Shultz LD, et al. IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Oncogene 2015; 35:1111-21; PMID: 25982283; https://doi.org/10.1038/onc.2015.164
  • Samanta S, Pursell B, Mercurio AM. IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J Biol Chem 2013; 288:12569-73; PMID: 23539627; https://doi.org/10.1074/jbc.C112.442319
  • Mizutani R, Imamachi N, Suzuki Y, Yoshida H, Tochigi N, Oonishi T, Suzuki Y, Akimitsu N. Oncofetal protein IGF2BP3 facilitates the activity of proto-oncogene protein eIF4E through the destabilization of EIF4E-BP2 mRNA. Oncogene 2015; 35:3495-502; PMID:26522719; https://doi.org/10.1038/onc.2015.410
  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010; 141:129-41; PMID: 20371350; https://doi.org/10.1016/j.cell.2010.03.009
  • Wilkie GS, Dickson KS, Gray NK. Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 2003; 28:182-8; PMID: 12713901; https://doi.org/10.1016/S0968-0004(03)00051-3
  • Turner JD, Vernocchi S, Schmitz S, Muller CP. Role of the 5'-untranslated regions in post-transcriptional regulation of the human glucocorticoid receptor. Biochim Biophys Acta 2014; 1839:1051-61; PMID: 25150144; https://doi.org/10.1016/j.bbagrm.2014.08.010
  • Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4:P3; PMID: 12734009; https://doi.org/10.1186/gb-2003-4-5-p3
  • Taniuchi K, Furihata M, Hanazaki K, Saito M, Saibara T. IGF2BP3-mediated translation in cell protrusions promotes cell invasiveness and metastasis of pancreatic cancer. Oncotarget 2014; 5:6832-45; PMID: 25216519; https://doi.org/10.18632/oncotarget.2257
  • Janky R, Verfaillie A, Imrichova H, Van de Sande B, Standaert L, Christiaens V, Hulselmans G, Herten K, Naval Sanchez M, Potier D, et al. iRegulon: From a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 2014; 10:e1003731; PMID: 25058159; https://doi.org/10.1371/journal.pcbi.1003731
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498-504; PMID: 14597658; https://doi.org/10.1101/gr.1239303
  • Dassi E, Re A, Leo S, Tebaldi T, Pasini L, Peroni D, Quattrone A. AURA 2: Empowering discovery of post-transcriptional networks. Translation 2014; 2:e27738; PMID: 26779400; https://doi.org/10.4161/trla.27738
  • Brinegar AE, Cooper TA. Roles for RNA-binding proteins in development and disease. Brain Res 2016; PMID: 26972534; 1647:1-8; https://doi.org/10.1016/j.brainres.2016.02.050
  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008; 582:1977-86; PMID: 18342629; https://doi.org/10.1016/j.febslet.2008.03.004
  • Blagden SP, Willis AE. The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol 2011; 8:280-91; PMID: 21364523; https://doi.org/10.1038/nrclinonc.2011.16
  • Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev Cancer 2010; 10:254-66; PMID: 20332778; https://doi.org/10.1038/nrc2824
  • Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae SS, Birnbaum MJ, Meyuhas O. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 2002; 22:8101-13; PMID: 12417714; https://doi.org/10.1128/MCB.22.23.8101-8113.2002
  • Gao B, Roux PP. Translational control by oncogenic signaling pathways. Biochim Biophys Acta 2015; 1849:753-65; PMID: 25477072; https://doi.org/10.1016/j.bbagrm.2014.11.006
  • Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J, Dreyfuss G. eIF4A3 is a novel component of the exon junction complex. RNA 2004; 10:200-9; PMID: 14730019; https://doi.org/10.1261/rna.5230104
  • Paronetto MP. Ewing sarcoma protein: A key player in human cancer. Int J Cell Biol 2013; 2013:642853; PMID: 24082883; https://doi.org/10.1155/2013/642853
  • Ennajdaoui H, Howard JM, Sterne-Weiler T, Jahanbani F, Coyne DJ, Uren PJ, Dargyte M, Katzman S, Draper JM, Wallace A, et al. IGF2BP3 modulates the interaction of Invasion-Associated transcripts with RISC. Cell Rep 2016; 15:1876-83; PMID: 27210763; https://doi.org/10.1016/j.celrep.2016.04.083
  • Barton VN, Foreman NK, Donson AM, Birks DK, Handler MH, Vibhakar R. Aurora kinase A as a rational target for therapy in glioblastoma. J Neurosurg Pediatr 2010; 6:98-105; PMID: 20593995; https://doi.org/10.3171/2010.3.PEDS10120
  • Kung PP, Martinez R, Zhu Z, Zager M, Blasina A, Rymer I, Hallin J, Xu M, Carroll C, Chionis J, et al. Chemogenetic evaluation of the mitotic kinesin CENP-E reveals a critical role in triple-negative breast cancer. Mol Cancer Ther 2014; 13:2104-15; PMID: 24928852; https://doi.org/10.1158/1535-7163.MCT-14-0083-T
  • Guo L, Zhang S, Zhang B, Chen W, Li X, Zhang W, Zhou C, Zhang J, Ren N, Ye Q. Silencing GTSE-1 expression inhibits proliferation and invasion of hepatocellular carcinoma cells. Cell Biol Toxicol 2016; 32:263-74; PMID:27240802; https://doi.org/10.1007/s10565-016-9327-z
  • Wang M, Zhu XY, Wang L, Lin Y. Expression and significance of CDC25B, PED/PEA-15 in esophageal carcinoma. Cancer Biother Radiopharm 2015; 30:139-45; PMID:25775393; https://doi.org/10.1089/cbr.2014.1701
  • Zhang Z, Zhang G, Kong C. High expression of Cdc25B and low expression of 14-3-3sigma is associated with the development and poor prognosis in urothelial carcinoma of bladder. Tumour Biol 2014; 35:2503-12; PMID: 24234332; https://doi.org/10.1007/s13277-013-1331-9
  • Yu XY, Zhang Z, Zhang GJ, Guo KF, Kong CZ. Knockdown of Cdc25B in renal cell carcinoma is associated with decreased malignant features. Asian Pac J Cancer Prev 2012; 13:931-5; PMID: 22631674; https://doi.org/10.7314/APJCP.2012.13.3.931
  • Cao XC, Yu Y, Hou LK, Sun XH, Ge J, Zhang B, Wang X. miR-142-3p inhibits cancer cell proliferation by targeting CDC25C. Cell Prolif 2016; 49:58-68; PMID: 26805039; https://doi.org/10.1111/cpr.12235
  • Sur S, Agrawal DK. Phosphatases and kinases regulating CDC25 activity in the cell cycle: Clinical implications of CDC25 overexpression and potential treatment strategies. Mol Cell Biochem 2016; 416:33-46; PMID: 27038604; https://doi.org/10.1007/s11010-016-2693-2
  • Navis AC, van den Eijnden M, Schepens JT, Hooft van Huijsduijnen R, Wesseling P, Hendriks WJ. Protein tyrosine phosphatases in glioma biology. Acta Neuropathol (Berl) 2010; 119:157-75; PMID: 19936768; https://doi.org/10.1007/s00401-009-0614-0
  • Lamers F, van der Ploeg I, Schild L, Ebus ME, Koster J, Hansen BR, Koch T, Versteeg R, Caron HN, Molenaar JJ. Knockdown of survivin (BIRC5) causes apoptosis in neuroblastoma via mitotic catastrophe. Endocr Relat Cancer 2011; 18:657-68; PMID: 21859926; https://doi.org/10.1530/ERC-11-0207
  • Liu Z, Zhang X, Xu X, Chen L, Li W, Yu H, Sun Y, Zeng J, Jia J. RUNX3 inhibits survivin expression and induces cell apoptosis in gastric cancer. Eur J Cell Biol 2014; 93:118-26; PMID: 24636883; https://doi.org/10.1016/j.ejcb.2014.02.002
  • Li WL, Lee MR, Cho MY. The small molecule survivin inhibitor YM155 may be an effective treatment modality for colon cancer through increasing apoptosis. Biochem Biophys Res Commun 2016; 471:309-14; PMID: 26855135; https://doi.org/10.1016/j.bbrc.2016.02.009
  • Finetti P, Guille A, Adelaide J, Birnbaum D, Chaffanet M, Bertucci F. ESPL1 is a candidate oncogene of luminal B breast cancers. Breast Cancer Res Treat 2014; 147:51-9; PMID: 25086634; https://doi.org/10.1007/s10549-014-3070-z
  • Chen F, Kamradt M, Mulcahy M, Byun Y, Xu H, McKay MJ, Cryns VL. Caspase proteolysis of the cohesin component RAD21 promotes apoptosis. J Biol Chem 2002; 277:16775-81; PMID: 11875078; https://doi.org/10.1074/jbc.M201322200
  • Jiang L, Siu MK, Wong OG, Tam KF, Lu X, Lam EW, Ngan HY, Le XF, Wong ES, Monteiro LJ, et al. iASPP and chemoresistance in ovarian cancers: Effects on paclitaxel-mediated mitotic catastrophe. Clin Cancer Res 2011; 17:6924-33; PMID: 21926165; https://doi.org/10.1158/1078-0432.CCR-11-0588

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.