828
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Deletion of eIF2β lysine stretches creates a dominant negative that affects the translation and proliferation in human cell line: A tool for arresting the cell growth

, , , , , , , , , & show all
Pages 560-570 | Received 23 Dec 2016, Accepted 17 Jun 2017, Published online: 25 Aug 2017

References

  • Sonenberg N, Dever TE. Eukaryotic translation initiation factors and regulators. Curr Opin Struct Biol 2003; 13(1):56-63; PMID:12581660; https://doi.org/10.1016/S0959-440X(03)00009-5
  • Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11(2):113-27; PMID:20094052; https://doi.org/10.1038/nrm2838
  • Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell 2009; 136(4):731-45; PMID:19239892; https://doi.org/10.1016/j.cell.2009.01.042
  • Kapp LD, Lorsch JR. The molecular mechanics of eukaryotic translation. Annu Rev Biochem 2004; 73:657-704; PMID:15189156; https://doi.org/10.1146/annurev.biochem.73.030403.080419
  • Hinnebusch AG. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 2011; 75(3):434-67; PMID:21885680; https://doi.org/10.1128/MMBR.00008-11
  • Lorsch JR, Dever TE. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation. J Biol Chem 2010; 285(28):21203-7; PMID:20444698; https://doi.org/10.1074/jbc.R110.119743
  • Kapp LD, Lorsch JR. GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J Mol Biol 2004; 335(4):923-36; PMID:14698289; https://doi.org/10.1016/j.jmb.2003.11.025
  • Castilho-Valavicius B, Thompson GM, Donahue TF. Mutation analysis of the Cys-X2-Cys-X19-Cys-X2-Cys motif in the beta subunit of eukaryotic translation initiation factor 2. Gene Expr 1992; 2(3):297-309; PMID:1450666.
  • Laurino JP, Thompson GM, Pacheco E, Castilho BA. The beta subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif. Mol Cell Biol 1999; 19(1):173-81; PMID:9858542; https://doi.org/10.1128/MCB.19.1.173
  • Proud CG. eIF2 and the control of cell physiology. Semin Cell Dev Biol 2005; 16(1):3-12; PMID:15659334; https://doi.org/10.1016/j.semcdb.2004.11.004
  • Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: New insights and challenges. Cold Spring Harb Perspect Biol 2012; 4(10):pii: a011544; PMID:22815232; https://doi.org/10.1101/cshperspect.a011544
  • Kimball SR. Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol 1999; 31(1):25-9; PMID:10216940; https://doi.org/10.1016/S1357-2725(98)00128-9
  • Kimball SR, Heinzinger NK, Horetsky RL, Jefferson LS. Identification of interprotein interactions between the subunits of eukaryotic initiation factors eIF2 and eIF2B. J Biol Chem 1998; 273(5):3039-44; PMID:9446619; https://doi.org/10.1074/jbc.273.5.3039
  • Das S, Maitra U. Mutational analysis of mammalian translation initiation factor 5 (eIF5): Role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Mol Cell Biol 2000; 20(11):3942-50; PMID:10805737; https://doi.org/10.1128/MCB.20.11.3942-3950.2000
  • Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG. Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J 1999; 18(6):1673-88; PMID:10075937; https://doi.org/10.1093/emboj/18.6.1673
  • Valásek L, Nielsen KH, Hinnebusch AG. Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 2002; 21(21):5886-98; PMID:12411506; https://doi.org/10.1093/emboj/cdf563
  • Ting NS, Kao PN, Chan DW, Lintott LG, Lees-Miller SP. DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45. J Biol Chem 1998; 273(4):2136-45; PMID:9442054; https://doi.org/10.1074/jbc.273.4.2136
  • Llorens F, Roher N, Miró FA, Sarno S, Ruiz FX, Meggio F, Plana M, Pinna LA, Itarte E. Eukaryotic translation-initiation factor eIF2beta binds to protein kinase CK2: Effects on CK2alpha activity. Biochem J 2003; 375(Pt 3):623-31; PMID:12901717; https://doi.org/10.1042/bj20030915
  • Kebache S, Zuo D, Chevet E, Larose L. Modulation of protein translation by Nck-1. Proc Natl Acad Sci U S A 2002; 99(8):5406-11; PMID:11959995; https://doi.org/10.1073/pnas.082483399
  • Kebache S, Cardin E, Nguyên DT, Chevet E, Larose L. Nck-1 antagonizes the endoplasmic reticulum stress-induced inhibition of translation. J Biol Chem 2004; 279(10):9662-71; PMID:14676213; https://doi.org/10.1074/jbc.M310535200
  • Donahue TF, Cigan AM, Pabich EK, Valavicius BC. Mutations at a Zn(II) finger motif in the yeast eIF-2 beta gene alter ribosomal start-site selection during the scanning process. Cell 1988; 54(5):621-32; PMID:3136928; https://doi.org/10.1016/S0092-8674(88)80006-0
  • Pathak VK, Nielsen PJ, Trachsel H, Hershey JW. Structure of the beta subunit of translational initiation factor eIF-2. Cell 1988; 54(5):633-9; PMID:3044606; https://doi.org/10.1016/S0092-8674(88)80007-2
  • Welsh GI, Price NT, Bladergroen BA, Bloomberg G, Proud CG. Identification of novel phosphorylation sites in the beta-subunit of translation initiation factor eIF-2. Biochem Biophys Res Commun 1994; 201(3):1279-88; PMID:8024572; https://doi.org/10.1006/bbrc.1994.1843
  • Robert F, Roman W, Bramoullé A, Fellmann C, Roulston A, Shustik C, Porco JA Jr5, Shore GC6, Sebag M7, Pelletier J8. Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma. Proc Natl Acad Sci U S A 2014; 111(37):13421-6; PMID:25197055; https://doi.org/10.1073/pnas.1402650111
  • Yin JY, Dong Z, Liu ZQ, Zhang JT. Translational control gone awry: A new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 2011; 31(1):1-15; PMID:20964625; https://doi.org/10.1042/BSR20100077
  • Ferraiuolo MA, Lee CS, Ler LW, Hsu JL, Costa-Mattioli M, Luo MJ, Reed R, Sonenberg N. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci U S A 2004; 101(12):4118-23; PMID:15024115; https://doi.org/10.1073/pnas.0400933101
  • Miluzio A, Beugnet A, Volta V, Biffo S. Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep 2009; 10(5):459-65; PMID:19373251; https://doi.org/10.1038/embor.2009.70
  • Kafasla P, Barrass JD, Thompson E, Fromont-Racine M, Jacquier A, Beggs JD, Lewis J. Interaction of yeast eIF4G with spliceosome components: Implications in pre-mRNA processing events. RNA Biol 2009; 6(5):563-74; PMID:19838078; https://doi.org/10.4161/rna.6.5.9861
  • McKendrick L, Thompson E, Ferreira J, Morley SJ, Lewis JD. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m(7) guanosine cap. Mol Cell Biol 2001; 21(11):3632-41; PMID:11340157; https://doi.org/10.1128/MCB.21.11.3632-3641.2001
  • Choe J, Ryu I, Park OH, Park J, Cho H, Yoo JS, Chi SW, Kim MK, Song HK, Kim YK. eIF4AIII enhances translation of nuclear cap-binding complex-bound mRNAs by promoting disruption of secondary structures in 5′UTR. Proc Natl Acad Sci U S A 2014; 111(43):E4577-86; PMID:25313076; https://doi.org/10.1073/pnas.1409695111
  • Baboo S, Cook PR. “Dark matter” worlds of unstable RNA and protein. Nucleus 2014; 5(4):281-6; PMID:25482115; https://doi.org/10.4161/nucl.29577
  • Lobo MV, Martin ME, Pérez MI, Alonso FJ, Redondo C, Alvarez MI, Salinas M. Levels, phosphorylation status and cellular localization of translational factor eIF2 in gastrointestinal carcinomas. Histochem J 2000; 32(3):139-50; PMID:10841309; https://doi.org/10.1023/A:1004091122351
  • Tejada S, Lobo MV, Garcia-Villanueva M, Sacristán S, Pérez-Morgado MI, Salinas M, Martín ME. Eukaryotic initiation factors (eIF) 2alpha and 4E expression, localization, and phosphorylation in brain tumors. J Histochem Cytochem 2009; 57(5):503-12; PMID:19188486; https://doi.org/10.1369/jhc.2009.952929
  • Goldstein EN, Owen CR, White BC, Rafols JA. Ultrastructural localization of phosphorylated eIF2alpha [eIF2alpha(P)] in rat dorsal hippocampus during reperfusion. Acta Neuropathol 1999; 98(5):493-505; PMID:10541873; https://doi.org/10.1007/s004010051115
  • Llorens F, Duarri A, Sarró E, Roher N, Plana M, Itarte E. The N-terminal domain of the human eIF2beta subunit and the CK2 phosphorylation sites are required for its function. Biochem J 2006; 394(Pt 1):227-36; PMID:16225457; https://doi.org/10.1042/BJ20050605
  • Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Görlich D. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J 2002; 21(22):6205-15; PMID:12426392; https://doi.org/10.1093/emboj/cdf613
  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI. Directed proteomic analysis of the human nucleolus. Curr Biol 2002; 12(1):1-11; PMID:11790298; https://doi.org/10.1016/S0960-9822(01)00650-9
  • Leung AK, Trinkle-Mulcahy L, Lam YW, Andersen JS, Mann M, Lamond AI. NOPdb: Nucleolar Proteome Database. Nucleic Acids Res 2006; 34(Database issue):D218-20; PMID:16381850; https://doi.org/10.1093/nar/gkj004
  • Mingot JM, Vega S, Cano A, Portillo F, Nieto MA. eEF1A mediates the nuclear export of SNAG-containing proteins via the Exportin5-aminoacyl-tRNA complex. Cell Rep 2013; 5(3):727-37; PMID:24209753; https://doi.org/10.1016/j.celrep.2013.09.030
  • Brina D, Miluzio A, Ricciardi S, Biffo S. eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression. Biochim Biophys Acta 2015; 1849(7):830-5; PMID:25252159; https://doi.org/10.1016/j.bbagrm.2014.09.010
  • Jiang Q, Li F, Shi K, Wu P, An J, Yang Y, Xu C. Involvement of p38 in signal switching from autophagy to apoptosis via the PERK/eIF2alpha/ATF4 axis in selenite-treated NB4 cells. Cell Death Dis 2014; 5:e1270; PMID:24874742; https://doi.org/10.1038/cddis.2014.200
  • Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 1998; 64(6):2240-6; PMID:9603842
  • Quiñones B, Massey S, Friedman M, Swimley MS, Teter K. Novel cell-based method to detect Shiga toxin 2 from Escherichia coli O157:H7 and inhibitors of toxin activity. Appl Environ Microbiol 2009; 75(5):1410-6; PMID:19139230; https://doi.org/10.1128/AEM.02230-08
  • Höglund A, Dönnes P, Blum T, Adolph HW, Kohlbacher O. MultiLoc: Prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 2006; 22(10):1158-65; PMID:16428265; https://doi.org/10.1093/bioinformatics/btl002
  • Nakai K, Horton P. PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999; 24(1):34-6; PMID:10087920; https://doi.org/10.1016/S0968-0004(98)01336-X
  • Lindqvist LM, Vikström I, Chambers JM, McArthur K, Ann Anderson M, Henley KJ, Happo L, Cluse L, Johnstone RW, Roberts AW. Translation inhibitors induce cell death by multiple mechanisms and Mcl-1 reduction is only a minor contributor. Cell Death Dis 2012; 3:e409; PMID:23059828; https://doi.org/10.1038/cddis.2012.149
  • De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene 2004; 23(18):3189-99; PMID:15094768; https://doi.org/10.1038/sj.onc.1207545
  • Dong Z, Zhang JT. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol 2006; 59(3):169-80; PMID:16829125; https://doi.org/10.1016/j.critrevonc.2006.03.005
  • Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev Cancer 2010; 10(4):254-66; PMID:20332778; https://doi.org/10.1038/nrc2824
  • Stumpf CR, Ruggero D. The cancerous translation apparatus. Curr Opin Genet Dev 2011; 21(4):474-83; PMID:21543223; https://doi.org/10.1016/j.gde.2011.03.007
  • Koromilas AE. Roles of the translation initiation factor eIF2α serine 51 phosphorylation in cancer formation and treatment. Biochem Biophys Acta 2015; 1849(7):871-80; PMID:25497381
  • Mathews MB, Hershey JW. The translation factor eIF5A and human cancer. Biochim Biophys Acta 2015; 1849(7):836-44; PMID:25979826; https://doi.org/10.1016/j.bbagrm.2015.05.002
  • Spilka R, Ernst C, Bergler H, Rainer J, Flechsig S, Vogetseder A, Lederer E, Benesch M, Brunner A, Geley S. eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation. Cell Oncol (Dordr) 2014; 37(4):253-67; PMID:25070653; https://doi.org/10.1007/s13402-014-0181-9
  • Li Z, Lin S, Jiang T, Wang J, Lu H, Tang H, Teng M, Fan J. Overexpression of eIF3e is correlated with colon tumor development and poor prognosis. Int J Clin Exp Pathol 2014; 7(10):6462-74; PMID:25400724
  • Rosenwald IB. The role of translation in neoplastic transformation from a pathologist's point of view. Oncogene 2004; 23(18):3230-47; PMID:15094773; https://doi.org/10.1038/sj.onc.1207552
  • Palakurthi SS, Fluckiger R, Aktas H, Changolkar AK, Shahsafaei A, Harneit S, Kilic E, Halperin JA. Inhibition of translation initiation mediates the anticancer effect of the n-3 polyunsaturated fatty acid eicosapentaenoic acid. Cancer Res 2000; 60(11):2919-25; PMID:10850438
  • Zheng Q, Ye J, Cao J. Translational regulator eIF2α in tumor. Tumour Biol 2014; 35(7):6255-64; PMID:24609900; https://doi.org/10.1007/s13277-014-1789-0
  • Heaney JD, Michelson MV, Youngren KK, Lam MT, Nadeau JH. Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Hum Mol Genet 2009; 18(8):1395-404; PMID:19168544; https://doi.org/10.1093/hmg/ddp045
  • Singh CR, Yamamoto Y, Asano K. Physical association of eukaryotic initiation factor (eIF) 5 carboxyl-terminal domain with the lysine-rich eIF2beta segment strongly enhances its binding to eIF3. J Biol Chem 2004; 279(48):49644-55; PMID:15377664; https://doi.org/10.1074/jbc.M409609200
  • Nurse P, Thuriaux P, Nasmyth K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 1976; 146(2):167-78; PMID:958201; https://doi.org/10.1007/BF00268085
  • Kronja I, Orr-Weaver TL. Translational regulation of the cell cycle: When, where, how and why? Philos Trans R Soc London B Biol Sci. 2011; 366(1584):3638-52; PMID:22084390; https://doi.org/10.1098/rstb.2011.0084
  • Franklin-Dumont TM, Chatterjee C, Wasserman SA, Dinardo S. A novel eIF4G homolog, Off-schedule, couples translational control to meiosis and differentiation in Drosophila spermatocytes. Development 2007; 134(15):2851-61; PMID:17611222; https://doi.org/10.1242/dev.003517
  • Baker CC, Fuller MT. Translational control of meiotic cell cycle progression and spermatid differentiation in male germ cells by a novel eIF4G homolog. Development 2007; 134(15):2863-9; PMID:17611220; https://doi.org/10.1242/dev.003764
  • Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 2004; 24(1):200-16; PMID:14673156; https://doi.org/10.1128/MCB.24.1.200-216.2004
  • Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 1993; 13(12):7358-63; PMID:8246956; https://doi.org/10.1128/MCB.13.12.7358
  • Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 1995; 270(36):21176-80; PMID:7673150; https://doi.org/10.1074/jbc.270.36.21176
  • Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci U S A 1996; 93(3):1065-70; PMID:8577715; https://doi.org/10.1073/pnas.93.3.1065
  • Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J, Dreyfuss G. eIF4A3 is a novel component of the exon junction complex. RNA 2004; 10(2):200-9; PMID:14730019; https://doi.org/10.1261/rna.5230104
  • Dostie J, Lejbkowicz F, Sonenberg N. Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J Cell Biol 2000; 148(2):239-47; PMID:10648556; https://doi.org/10.1083/jcb.148.2.239
  • Olson MO, Hingorani K, Szebeni A. Conventional and nonconventional roles of the nucleolus. Int Rev Cytol 2002; 219:199-266; PMID:12211630
  • Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D. Nucleolus: The fascinating nuclear body. Histochem Cell Biol 2008; 129(1):13-31; PMID:18046571; https://doi.org/10.1007/s00418-007-0359-6
  • Mayer C, Grummt I. Cellular stress and nucleolar function. Cell Cycle 2005; 4(8):1036-8; PMID:16205120; https://doi.org/10.4161/cc.4.8.1925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.