775
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Preclinical evaluation of novel PI3K/mTOR dual inhibitor SN202 as potential anti-renal cancer agent

, , , , , & show all
Pages 1015-1022 | Received 08 Mar 2018, Accepted 24 Apr 2018, Published online: 27 Sep 2018

References

  • Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genetics. 2006;7(8):606–619. PMID: 16847462; doi: https://doi.org/10.1038/nrg1879.
  • Dey N, Sun Y, Carlson JH, Wu H, Lin X, Leyland-Jones B, De P. Anti-tumor efficacy of BEZ235 is complemented by its anti-angiogenic effects via downregulation of PI3K-mTOR-HIF1alpha signaling in HER2-defined breast cancers. Am J Cancer Res. 2016;6(4):714–746. PMID: 27186427.
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501. PMID: 12094235; doi: https://doi.org/10.1038/nrc839.
  • Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treatment Rev. 2004;30(2):193–204. PMID: 15023437; doi: https://doi.org/10.1016/j.ctrv.2003.07.007
  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol. 1997;7(4):261–269. PMID: 9094314; doi: https://doi.org/10.1016/S0960-9822(06)00122-9.
  • Guri Y, Hall MN. mTOR signaling confers resistance to targeted cancer drugs. Trends Cancer. 2016;2(11):688–697. PMID: 28741507; doi: https://doi.org/10.1016/j.trecan.2016.10.006.
  • Ding J, Romani J, Zaborski M, MacLeod RAF, Nagel S, Drexler HG, Quentmeier H. Inhibition of PI3K/mTOR overcomes Nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2. Plos One. 2013;8(12):e83510. PMID: 24349524; doi: https://doi.org/10.1371/journal.pone.0083510.
  • Sun Z, Li Q, Zhang S, Chen J, Huang L, Ren J, Chang Y, Liang Y, Wu G. NVP-BEZ235 overcomes gefitinib-acquired resistance by down-regulating PI3K/AKT/mTOR phosphorylation. OncoTargets Therapy. 2015;8:269–277. PMID: 25674002; doi: https://doi.org/10.2147/OTT.S62128.
  • Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of Trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395–402. PMID: 17936563; doi: https://doi.org/10.1016/j.ccr.2007.08.030.
  • Park BH, Davidson NE. PI3 kinase activation and response to Trastuzumab therapy: What's neu with Herceptin resistance? Cancer Cell. 2007;12(4):297–299. PMID: 17936554; doi: https://doi.org/10.1016/j.ccr.2007.10.004.
  • Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Therapy. 2011;11(2):263–275. PMID: 21342044; doi: https://doi.org/10.1586/era.10.226.
  • Merseburger AS, Hennenlotter J, Kuehs U, Simon P, Kruck S, Koch E, Stenzl A, Kuczyk MA. Activation of PI3K is associated with reduced survival in renal cell carcinoma. Urologia Internationalis. 2008;80(4):372–377. PMID: 18587247; doi: https://doi.org/10.1159/000132694.
  • Carlo MI, Molina AM, Lakhman Y, Patil S, Woo K, Deluca J, Lee CH, Hsieh JJ, Feldman DR, Motzer RJ. A Phase Ib Study of BEZ235, a dual inhibitor of phosphatidylinositol 3-Kinase (PI3K) and Mammalian Target of Rapamycin (mTOR), in patients with advanced renal cell Carcinoma. Oncologist. 2016;21(7):787–788. PMID: 27286790; doi: https://doi.org/10.1634/theoncologist.2016-0145.
  • Maira S-M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Therapeutics. 2008;7(7):1851–1863. PMID: 18606717; doi: https://doi.org/10.1158/1535-7163.MCT-08-0017.
  • Yuan J, Mehta PP, Yin M-J, Sun S, Zou A, Chen J, Rafidi K, Feng Z, Nickel J, Engebretsen J, et al. PF-04691502, a potent and selective oral inhibitor of PI3K and mTOR kinases with antitumor activity. Mol Cancer Therapeutics. 2011;10(11):2189–2199. PMID: 21750219; doi: https://doi.org/10.1158/1535-7163.MCT-11-0185.
  • Pal I, Mandal M. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacologica Sinica. 2012;33(12):1441–1458. PMID: 22983389; doi: https://doi.org/10.1038/aps.2012.72.
  • Britten CD, Adjei AA, Millham R, Houk BE, Borzillo G, Pierce K, Wainberg ZA, LoRusso PM. Phase I study of PF-04691502, a small-molecule, oral, dual inhibitor of PI3K and mTOR, in patients with advanced cancer. Investigational New Drugs. 2014;32(3):510–517. PMID: 24395457; doi: https://doi.org/10.1007/s10637-013-0062-5.
  • Gravina GL, Mancini A, Scarsella L, Colapietro A, Jitariuc A, Vitale F, Marampon F, Ricevuto E, Festuccia C. Dual PI3K/mTOR inhibitor, XL765 (SAR245409), shows superior effects to sole PI3K [XL147 (SAR245408)] or mTOR [rapamycin] inhibition in prostate cancer cell models. Tumour Biol. 2016;37(1):341–351. PMID: 26219891; doi: https://doi.org/10.1007/s13277-015-3725-3.
  • Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Research. 2008;68(19):8022–8030. PMID: 18829560; doi: https://doi.org/10.1158/0008-5472.CAN-08-1385.
  • Datta K, Bellacosa A, Chan TO, Tsichlis PN. Akt is a direct target of the phosphatidylinositol 3-kinase activation by growth factors, v-src and v-ha-ras, in sf9 and mammalian cells. J Biol Chem. 1996;271(48):30835–30839. doi: https://doi.org/10.1074/jbc.271.48.30835.
  • Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6(9):729–734. PMID: 16915295; doi: https://doi.org/10.1038/nrc1974.
  • Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med. 2005;11(8):353–361. PMID: 16002336; doi: https://doi.org/10.1016/j.molmed.2005.06.007.
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22. PMID: 17613433; doi: https://doi.org/10.1016/j.ccr.2007.05.008.
  • Wang Z, Huang Y, Zhang J. Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy. Cell Mol Biol Letters. 2014;19(2):233–242. PMID: 24728800; doi: https://doi.org/10.2478/s11658-014-0191-7.
  • Cho DC, Cohen MB, Panka DJ, Collins M, Ghebremichael M, Atkins MB, Signoretti S, Mier JW. The efficacy of the novel dual PI3-Kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell Carcinoma. Clin Cancer Res. 2010;16(14):3628–3638. PMID: 20606035; doi: https://doi.org/10.1158/1078-0432.ccr-09-3022.
  • Cho D. Novel targeting of Phoshatidylinositol-3 Kinase and Mammalian Target of Rapamycin (mTOR) in renal cell carcinoma. Cancer J. 2013;19(4):311–315. PMID: 23867512; doi: https://doi.org/10.1097/PPO.0b013e31829d5cea.
  • Santoni M, Pantano F, Amantini C, Nabissi M, Conti A, Burattini L, Zoccoli A, Berardi R, Santoni G, Tonini G, et al. Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochimica Et Biophysica Acta (BBA) – Rev Cancer. 2014;1845(2):221–231. PMID: 24480319; doi: https://doi.org/10.1016/j.bbcan.2014.01.007.
  • Conti A, Santoni M, Amantini C, Burattini L, Berardi R, Santoni G, Cascinu S, Muzzonigro G. Progress of molecular targeted therapies for advanced renal cell carcinoma. Biomed Res Int. 2013;2013(12):1–9. PMID: 24093097; doi: https://doi.org/10.1155/2013/419176.
  • Roulin D, Waselle L, Dormond-Meuwly A, Dufour M, Demartines N, Dormond O. Targeting renal cell carcinoma with NVP-BEZ235, a dual PI3K/mTOR inhibitor, in combination with sorafenib. Mol Cancer. 2011;10(1):90. PMID: 21791089; doi: https://doi.org/10.1186/1476-4598-10-90.
  • Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig P-A, Reinecke M, Ruprecht B, Petzoldt S, Meng C, et al. The target landscape of clinical kinase drugs. Science. 2017;358(6367):eaan4368. PMID: 29191878; doi: https://doi.org/10.1126/science.aan4368.
  • Cheng H, Li C, Bailey S, Baxi SM, Goulet L, Guo L, Hoffman J, Jiang Y, Johnson TO, Johnson TW. Discovery of the highly potent PI3K/mTOR dual inhibitor PF-04979064 through structure-based drug design. Acs Medicinal Chem Letters. 2012;4(1):91–97. PMID: 24900568; doi: https://doi.org/10.1021/ml300309h.
  • Elfiky AA, Aziz SA, Conrad PJ, Siddiqui S, Hackl W, Maira M, Robert CL, Kluger HM. Characterization and targeting of phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) in renal cell cancer. J Translational Med. 2011;9:133–133. PMID: 21834980; doi: https://doi.org/10.1186/1479-5876-9-133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.