1,725
Views
19
CrossRef citations to date
0
Altmetric
Research Paper

Targeted blockade of HSP90 impairs DNA-damage response proteins and increases the sensitivity of ovarian carcinoma cells to PARP inhibition

, , , , , & show all
Pages 1035-1045 | Received 22 Oct 2018, Accepted 23 Feb 2019, Published online: 30 Mar 2019

References

  • Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. 2016. Ovarian cancer. Nat Rev Dis Primers. 2:16061. doi:10.1038/nrdp.2016.61.
  • Lupo B, Trusolino L. 2014. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim Biophys Acta. 1846:201–215. doi:10.1016/j.bbcan.2014.07.004.
  • Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, et al. 2009. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 361:123–134. doi:10.1056/NEJMoa0900212.
  • Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E, Tzou A, Philip R, et al. 2015. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res. 21:4257–4261. doi:10.1158/1078-0432.CCR-15-0887.
  • Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott C, Meier W, Shapira-Frommer R, Safra T, et al. 2012. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 366:1382–1392. doi:10.1056/NEJMoa1105535.
  • Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B, et al. 2011. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12:852–861. doi:10.1016/S1470-2045(11)70214-5.
  • Schopf FH, Biebl MM, Buchner J. 2017. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 18:345–360. doi:10.1038/nrm.2017.20.
  • Jacquemont C, Simon JA, D’Andrea AD, Taniguchi T. 2012. Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin. Mol Cancer. 11:26. doi:10.1186/1476-4598-11-26.
  • Stecklein SR, Kumaraswamy E, Behbod F, Wang W, Chaguturu V, Harlan-Williams LM, Jensen RA. 2012. BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci USA. 109:13650–13655. doi:10.1073/pnas.1203326109.
  • Jiang J, Lu Y, Li Z, Li L, Niu D, Xu W, Liu J, Fu L, Zhou Z, Gu Y, et al. 2017. Ganetespib overcomes resistance to PARP inhibitors in breast cancer by targeting core proteins in the DNA repair machinery. Invest New Drugs. 35:251–259. doi:10.1007/s10637-016-0424-x.
  • He S, Smith DL, Sequeira M, Sang J, Bates RC, Proia DA. 2014. The HSP90 inhibitor ganetespib has chemosensitizer and radiosensitizer activity in colorectal cancer. Invest New Drugs. 32:577–586. doi:10.1007/s10637-014-0095-4.
  • Gomez-Casal R, Bhattacharya C, Epperly MW, Basse PH, Wang H, Wang X, Proia DA, Greenberger JS, Socinski MA, Levina V. 2015. The HSP90 inhibitor ganetespib radiosensitizes human lung adenocarcinoma cells. Cancers (Basel). 7:876–907. doi:10.3390/cancers7020814.
  • Lee H, Saini N, Howard EW, Parris AB, Ma Z, Zhao Q, Zhao M, Liu B, Edgerton SM, Thor AD, et al. 2018. Ganetespib targets multiple levels of the receptor tyrosine kinase signaling cascade and preferentially inhibits ErbB2-overexpressing breast cancer cells. Sci Rep. 8:6829. doi:10.1038/s41598-018-25284-0.
  • Liu H, Xiao F, Serebriiskii IG, O’Brien SW, Maglaty MA, Astsaturov I, Litwin S, Martin LP, Proia DA, Golemis EA, et al. 2013. Network analysis identifies an HSP90-central hub susceptible in ovarian cancer. Clin Cancer Res. 19:5053–5067. doi:10.1158/1078-0432.CCR-13-1115.
  • Litton JK, Rugo HS, Ettl J, Hurvitz SA, Goncalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, et al. 2018. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 379:753–763. doi:10.1056/NEJMoa1802905.
  • Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, et al. 2012. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol. 180:599–607. doi:10.1016/j.ajpath.2011.10.036.
  • Liu X, Krawczyk E, Suprynowicz FA, Palechor-Ceron N, Yuan H, Dakic A, Simic V, Zheng YL, Sripadhan P, Chen C, et al. 2017. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc. 12:439–451. doi:10.1038/nprot.2016.174.
  • Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 1995;47:331–385.
  • Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM. 2003. Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol. 81:123–129. doi:10.1139/o03-042.
  • Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. 2001. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 276:42462–42467. doi:10.1074/jbc.C100466200.
  • Bakkenist CJ, Kastan MB. 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 421:499–506. doi:10.1038/nature01368.
  • Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A. 2013. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 19:5003–5015. doi:10.1158/1078-0432.CCR-13-1391.
  • Pilot A. Study of Induction PARP Inhibition in Ovarian Cancer. Bethesda (MD): National Library of Medicine; 2014 Dec 15. accessed Sep 2018 https://clinicaltrials.gov/ct2/show/NCT02316834
  • Pilot trial of BMN 673, an Oral PARP inhibitor, in patients with advanced solid tumors and deleterious BRCA mutations. Bethesda (MD): National Library of Medicine; 2013 Nov 21. accessed 2018 Sep 18 https://clinicaltrials.gov/ct2/show/NCT01989546
  • DelloRusso C, Welcsh PL, Wang W, Garcia RL, King M-C, Swisher EM. 2007. Functional characterization of a novel BRCA1-null ovarian cancer cell line in response to ionizing radiation. Mol Cancer Res. 5:35–45. doi:10.1158/1541-7786.mcr-06-0234.
  • Hoy SM. 2018. Talazoparib: first global approval. Drugs. 78:1939–1946. doi:10.1007/s40265-018-1026-z.
  • Ison G, Howie LJ, Amiri-Kordestani L, Zhang L, Tang S, Sridhara R, Pierre V, Charlab R, Ramamoorthy A, Song P, et al. 2018. FDA approval summary: niraparib for the maintenance treatment of patients with recurrent ovarian cancer in response to platinum-based chemotherapy. Clin Cancer Res. 24:4066–4071. doi:10.1158/1078-0432.CCR-18-0042.
  • Musella A, Bardhi E, Marchetti C, Vertechy L, Santangelo G, Sassu C, Tomao F, Rech F, D’Amelio R, Monti M, et al. 2018. Rucaparib: an emerging parp inhibitor for treatment of recurrent ovarian cancer. Cancer Treat Rev. 66:7–14. doi:10.1016/j.ctrv.2018.03.004.
  • Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, et al. 2010. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 376:245–251. doi:10.1016/S0140-6736(10)60893-8.
  • Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C, et al. 2010. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol. 28:2512–2519. doi:10.1200/jco.2009.26.9589.
  • Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, et al. 2010. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 376:235–244. doi:10.1016/S0140-6736(10)60892-6.
  • Coleman RL, Sill MW, Bell-McGuinn K, Aghajanian C, Gray HJ, Tewari KS, Rubin SC, Rutherford TJ, Chan JK, Chen A, et al. 2015. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation - An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 137:386–391. doi:10.1016/j.ygyno.2015.03.042.
  • Fong PC, Boss DS, Carden CR, Roelvink M, De Greve J, Gourley CM, Carmichael J, De Bono JS, Schellens JH, Kaye SB. 2008. AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: results from a phase I study. J Clin Oncol. 26:5510. doi:10.1200/jco.2008.26.15_suppl.5510.
  • Konstantinopoulos PA, Matulonis UA. 2018. PARP inhibitors in ovarian cancer: a trailblazing and transformative journey. Clin Cancer Res. 24:4062–4065. doi:10.1158/1078-0432.CCR-18-1314.
  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–917. nature03443 [pii]. doi:10.1038/nature03443.
  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–921. nature03445 [pii]. doi:10.1038/nature03445.
  • Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, Colombo N, Weberpals JI, Clamp A, Scambia G, et al. 2017. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 390:1949–1961. doi:10.1016/S0140-6736(17)32440-6.
  • Drean A, Lord CJ, Ashworth A. 2016. PARP inhibitor combination therapy. Crit Rev Oncol Hematol. 108:73–85. doi:10.1016/j.critrevonc.2016.10.010.
  • Neckers L, Workman P. 2012. Hsp90 molecular chaperone inhibitors: are we there yet?. Clin Cancer Res. 18:64–76. doi:10.1158/1078-0432.CCR-11-1000.
  • Johnson N, Johnson SF, Yao W, Li YC, Choi YE, Bernhardy AJ, Wang Y, Capelletti M, Sarosiek KA, Moreau LA, et al. 2013. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc Natl Acad Sci USA. 110:17041–17046. doi:10.1073/pnas.1305170110.
  • Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, Garber JE, Chowdhury D, Wu CJ, D’Andrea AD, et al. 2016. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 7:13587–13598. doi:10.18632/oncotarget.7277.
  • Choi YE, Battelli C, Watson J, Liu J, Curtis J, Morse AN, Matulonis UA, Chowdhury D, Konstantinopoulos PA. 2014. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells. Oncotarget. 5:2678–2687. doi:10.18632/oncotarget.1929.
  • Johnson N, Cai D, Kennedy RD, Pathania S, Arora M, Li YC, D’Andrea AD, Parvin JD, Shapiro GI. 2009. Cdk1 participates in BRCA1-dependent S phase checkpoint control in response to DNA damage. Mol Cell. 35:327–339. doi:10.1016/j.molcel.2009.06.036.
  • Johnson N, Li YC, Walton ZE, Cheng KA, Li D, Rodig SJ, Moreau LA, Unitt C, Bronson RT, Thomas HD, et al. 2011. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med. 17:875–882. doi:10.1038/nm.2377.
  • Lee JW, Lee K-M, Han W. 2013. Abstract C76: foxM1 inhibition sensitized BRCA-proficient triple-negative breast cancer to PARP inhibition. Mol Cancer Ther. 12:C76. doi:10.1158/1535-7163.targ-13-c76.
  • Picard D. HSP90 interactors. Geneva (Switzerland): University of Geneva; 2018 Aug 4. accessed 2018 Aug 22 http://www.picard.ch/downloads/Hsp90interactors.pdf
  • Echeverria PC, Bhattacharya K, Joshi A, Wang T, Picard D. 2019. The sensitivity to Hsp90 inhibitors of both normal and oncogenically transformed cells is determined by the equilibrium between cellular quiescence and activity. PLoS One. 14:e0208287. doi:10.1371/journal.pone.0208287.
  • Konstantinopoulos P, Palakurthi S, Zeng Q, Zhou S, Liu JF, Ivanova E, Paweletz C, Kommajosyula N, D’Andrea AD, Shapiro G, et al. 2016. In vivo synergism between PARP-inhibitor olaparib and HSP90-inhibitor AT13387 in high grade serous ovarian cancer patient derived xenografts. J Clin Oncol. 34:e17045–e. doi:10.1200/JCO.2016.34.15_suppl.e17045.
  • Miyamoto M, Takano M, Aoyama T, Soyama H, Ishibashi H, Kato K, Iwahashi H, Takasaki K, Kuwahara M, Matuura H, et al. 2018. Phenoxodiol increases cisplatin sensitivity in ovarian clear cancer cells through XIAP down-regulation and autophagy inhibition. Anticancer Res. 38:301–306. doi:10.21873/anticanres.12222.
  • Liu Y, Tang J, Liu D, Zhang L, He Y, Li J, Gao L, Tang D, Jin X, Kong D. 2018. Increased autophagy in EOC re-ascites cells can inhibit cell death and promote drug resistance. Cell Death Dis. 9:419. doi:10.1038/s41419-018-0449-5.
  • Wang J, Wu GS. 2014. Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem. 289:17163–17173. doi:10.1074/jbc.M114.558288.
  • Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. 2018. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones. 23:467–482. doi:10.1007/s12192-018-0877-2.
  • Yuno A, Lee MJ, Lee S, Tomita Y, Rekhtman D, Moore B, Trepel JB. 2018. Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol Biol. 1709:423–441. doi:10.1007/978-1-4939-7477-1_29.
  • Kryeziu K, Bruun J, Guren TK, Sveen A, Lothe RA. 2019. Combination therapies with HSP90 inhibitors against colorectal cancer. Biochim Biophys Acta Rev Cancer. 1871:240–247. doi:10.1016/j.bbcan.2019.01.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.