1,541
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

SIRT6-PARP1 is involved in HMGB1 polyADP-ribosylation and acetylation and promotes chemotherapy-induced autophagy in leukemia

, , , , ORCID Icon &
Pages 320-331 | Received 02 Jan 2019, Accepted 01 Dec 2019, Published online: 13 Jan 2020

References

  • Vadillo E, Dorantes-Acosta E, Pelayo R, Schnoor M. 2018. T cell acute lymphoblastic leukemia (T-ALL): new insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev. 32:36–51. doi:10.1016/j.blre.2017.08.006.
  • Greaves MF, Janossy G, Peto J, Kay H. 1981. Immunologically defined subclasses of acute lymphoblastic leukaemia in children: their relationship to presentation features and prognosis. Br J Haematol. 48:179–197. doi:10.1111/j.1365-2141.1981.
  • Richter-Pechanska P, Kunz JB, Hof J, Zimmermann M, Rausch T, Bandapalli OR, Orlova E, Scapinello G, Sagi JC, Stanulla M, et al. 2017. Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J. 7:e523. doi:10.1038/bcj.2017.3.
  • Belver L, Ferrando A. 2016. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 16:494–507. doi:10.1038/nrc.2016.63.
  • Feng Y, He D, Yao Z, Klionsky DJ. 2014. The machinery of macroautophagy. Cell Res. 24:24–41. doi:10.1038/cr.2013.168.
  • Parzych KR, Klionsky DJ. 2014. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. doi:10.1089/ars.2013.5371.
  • Bustin M. 1999. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol. 19:5237–5246. doi:10.1128/mcb.19.8.5237.
  • Stevens NE, Chapman MJ, Fraser CK, Kuchel TR, Hayball JD, Diener KR. 2017. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep. 7:5850. doi:10.1038/s41598-017-06205-z.
  • Lee W, Kwon OK, Han MS, Lee YM, Kim SW, Kim KM, Lee T, Lee S, Bae JS. 2015. Role of moesin in HMGB1-stimulated severe inflammatory responses. Thromb Haemost. 114:350–363. doi:10.1160/th14-11-0969.
  • Harris HE, Andersson U, Pisetsky DS. 2012. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nature Rev Rheumatol. 8:195–202. doi:10.1038/nrrheum.2011.222.
  • Tang D, Kang R, Zeh HJ 3rd, Lotze MT. 2010. High-mobility group box 1 and cancer. Biochim Biophys Acta. 1799:131–140. doi:10.1016/j.bbagrm.2009.11.014.
  • Kong Q, Xu LH, Xu W, Fang JP, Xu HG. 2015. HMGB1 translocation is involved in the transformation of autophagy complexes and promotes chemoresistance in leukaemia. Int J Oncol. 47:161–170. doi:10.3892/ijo.2015.2985.
  • Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, Rubartelli A. 2002. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3:995–1001. doi:10.1093/embo-reports/kvf198.
  • Oh YJ, Youn JH, Ji Y, Lee SE, Lim KJ, Choi JE, Shin JS. 2009. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J Immunol (Baltimore, Md: 1950). 182:5800–5809. doi:10.4049/jimmunol.0801873.
  • Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, et al. 2009. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 462:99–103. doi:10.1038/nature08512.
  • Zhang Q, Wang Y. 2010. HMG modifications and nuclear function. Biochim Biophys Acta. 1799:28–36. doi:10.1016/j.bbagrm.2009.11.009.
  • Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. Embo J. 22:5551–5560. doi:10.1093/emboj/cdg516.
  • Yang Y, Wang J, Yang Q, Wu S, Yang Z, Zhu H, Zheng M, Liu W, Wu W, He J, et al. 2014. Shikonin inhibits the lipopolysaccharide-induced release of HMGB1 in RAW264.7 cells via IFN and NF-kappaB signaling pathways. Int Immunopharmacol. 19:81–87. doi:10.1016/j.intimp.2014.01.003.
  • Gil R, Barth S, Kanfi Y, Cohen HY. 2013. SIRT6 exhibits nucleosome-dependent deacetylase activity. Nucleic Acids Res. 41:8537–8545. doi:10.1093/nar/gkt642.
  • Azuma Y, Yokobori T, Mogi A, Altan B, Yajima T, Kosaka T, Onozato R, Yamaki E, Asao T, Nishiyama M, et al. 2015. SIRT6 expression is associated with poor prognosis and chemosensitivity in patients with non-small cell lung cancer. J Surg Oncol. 112:231–237. doi:10.1002/jso.23975.
  • Cagnetta A, Soncini D, Orecchioni S, Talarico G, Minetto P, Guolo F, Retali V, Colombo N, Carminati E, Clavio M, et al. 2018. Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells’ vulnerability to DNA-damaging agents. Haematologica. 103:80–90. doi:10.3324/haematol.2017.176248.
  • Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ 3rd, Li L, et al. 2012. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72:1996–2005. doi:10.1158/0008-5472.Can-11-2291.
  • Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell. 1999;99:735–745. doi:10.1016/S0092-8674(00)81671-2.
  • Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 403:795–800. doi:10.1038/35001622.
  • Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Sci (New York, NY). 332:1443–1446. doi:10.1126/science.1202723.
  • Ditsworth D, Zong WX, Thompson CB. 2007. Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem. 282:17845–17854. doi:10.1074/jbc.M701465200.
  • Davis K, Banerjee S, Friggeri A, Bell C, Abraham E, Zerfaoui M. 2012. Poly(ADP-ribosyl)ation of high mobility group box 1 (HMGB1) protein enhances inhibition of efferocytosis. Mol Med (Cambridge, Mass). 18:359–369. doi:10.2119/molmed.2011.00203.
  • Lu B, Wang H, Andersson U, Tracey KJ. 2013. Regulation of HMGB1 release by inflammasomes. Protein Cell. 4:163–167. doi:10.1007/s13238-012-2118-2.
  • Boone BA, Orlichenko L, Schapiro NE, Loughran P, Gianfrate GC, Ellis JT, Singhi AD, Kang R, Tang D, Lotze MT, et al. 2015. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. 22:326–334. doi:10.1038/cgt.2015.21.
  • Ito I, Fukazawa J, Yoshida M. 2007. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem. 282:16336–16344. doi:10.1074/jbc.M608467200.
  • Yang M, Liu L, Xie M, Sun X, Yu Y, Kang R, Yang L, Zhu S, Cao L, Tang D. 2015. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy. 11:214–224. doi:10.4161/15548627.2014.994400.
  • Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, et al. 2014. HMGB1 in health and disease. Mol Aspects Med. 40:1–116. doi:10.1016/j.mam.2014.05.001.
  • Lu B, Antoine DJ, Kwan K, Lundback P, Wahamaa H, Schierbeck H, Robinson M, Van Zoelen MA, Yang H, Li J, et al. 2014. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A. 111:3068–3073. doi:10.1073/pnas.1316925111.
  • JY Z, Crews FT. 2014. Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One. 9:e87915. doi:10.1371/journal.pone.0087915.
  • Sterner R, Vidali G, Allfrey VG. Studies of acetylation and deacetylation in high mobility group proteins identification of the Sites of acetylation in HMG-1. The J Biol Che. 1979;254:11577–11583.
  • Yang Z, Li L, Chen L, Yuan W, Dong L, Zhang Y, Wu H, Wang C. 2014. PARP-1 mediates LPS-induced HMGB1 release by macrophages through regulation of HMGB1 acetylation. J Immunol (Baltimore, Md: 1950). 193:6114–6123. doi:10.4049/jimmunol.1400359.
  • Luo X, Kraus WL. 2012. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26:417–432. doi:10.1101/gad.183509.111.
  • Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L, Klune JR, Zlotnicki J, Billiar T, Tsung A. 2010. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 285:39888–39897. doi:10.1074/jbc.M110.128348.
  • Van Meter M, Mao Z, Gorbunova V, Seluanov A. 2011. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging. 3:829–835. doi:10.18632/aging.100389.
  • Woodhouse BC, Dianov GL. 2008. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst). 7:1077–1086. doi:10.1016/j.dnarep.2008.03.009.
  • Lombard DB. 2009. Sirtuins at the breaking point: SIRT6 in DNA repair. Aging. 1:12–16. doi:10.18632/aging.100014.
  • Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S, et al. 2013. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell. 51:454–468. doi:10.1016/j.molcel.2013.06.018.
  • McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, et al. 2009. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging. 1:109–121. doi:10.18632/aging.100011.
  • Xu Z, Zhang L, Zhang W, Meng D, Zhang H, Jiang Y, Xu X, Van Meter M, Seluanov A, Gorbunova V, et al. 2015. SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner. Cell Cycle (Georgetown, Tex). 14:269–276. doi:10.4161/15384101.2014.980641.
  • Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J. 2015. Autophagy in DNA damage response. Int J Mol Sci. 16:2641–2662. doi:10.3390/ijms16022641.
  • Qiang L, Zhao B, Shah P, Sample A, Yang S, He YY. 2016. Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy. 12:357–368. doi:10.1080/15548627.2015.1110667.
  • Shao J, Yang X, Liu T, Zhang T, Xie QR, Xia W. 2016. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage. Protein Cell. 7:281–290. doi:10.1007/s13238-016-0257-6.
  • Takasaka N, Araya J, Hara H, Ito S, Kobayashi K, Kurita Y, Wakui H, Yoshii Y, Yumino Y, Fujii S, et al. 2014. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol (Baltimore, Md: 1950). 192:958–968. doi:10.4049/jimmunol.1302341.
  • Lee OH, Kim J, Kim JM, Lee H, Kim EH, Bae SK, Choi Y, Nam HS, Heo JH. 2013. Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia. Biochem Biophys Res Commun. 438:388–394. doi:10.1016/j.bbrc.2013.07.085.
  • Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI, Munoz-Gamez JA, de Almodovar MR, Siles E, Rivas AL, et al. 2012. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22:1181–1198. doi:10.1038/cr.2012.70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.