2,300
Views
9
CrossRef citations to date
0
Altmetric
Review

Current perspectives on exosomes in the diagnosis and treatment of hepatocellular carcinoma (review)

, , , & ORCID Icon
Pages 279-290 | Received 24 Dec 2020, Accepted 01 Mar 2021, Published online: 13 Apr 2021

References

  • Dong G, Zhang S, Shen S, Sun L, Wang X, Wang H, Wu J, Liu T, Wang C, Wang H, et al. 2020. Spats2, negatively regulated by mir-145-5p, promotes hepatocellular carcinoma progression through regulating cell cycle. Cell Death Dis. 11(10):837. doi:10.1038/s41419-020-03039-y.
  • Ozakyol A. 2017. Global epidemiology of hepatocellular carcinoma (hcc epidemiology). J Gastrointest Cancer. 48(3):238–240. doi:10.1007/s12029-017-9959-0.
  • Qin Z, Xiang C, Zhong F, Liu Y, Dong Q, Li K, Shi W, Ding C, Qin L, He F. 2019. Transketolase (tkt) activity and nuclear localization promote hepatocellular carcinoma in a metabolic and a non-metabolic manner. J Exp Clin Cancer Res. 38(1):154. doi:10.1186/s13046-019-1131-1.
  • Vibert E, Schwartz M, Olthoff KM. 2020. Advances in resection and transplantation for hepatocellular carcinoma. J Hepatol. 72(2):262–276. doi:10.1016/j.jhep.2019.11.017.
  • Liang B, Hu X, Ding Y, Liu M. 2020. Tumor-derived exosomes in the pd-1/pd-l1 axis: significant regulators as well as promising clinical targets. J Cell Physiol. doi:10.1002/jcp.30197.
  • Gougelet A. 2018. Exosomal micrornas as a potential therapeutic strategy in hepatocellular carcinoma. World J Hepatol. 10(11):785–789. doi:10.4254/wjh.v10.i11.785.
  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–9420. doi:10.1016/S0021-9258(18)48095-7.
  • Vlassov AV, Magdaleno S, Setterquist R, Conrad R. 2012. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 1820(7):940–948. doi:10.1016/j.bbagen.2012.03.017.
  • Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. 2018. Minimal information for studies of extracellular vesicles 2018 (misev2018): a position statement of the international society for extracellular vesicles and update of the misev2014 guidelines. J Extracell Vesicles. 7(1):1535750. doi:10.1080/20013078.2018.1535750.
  • Li C, Hou X, Zhang P, Li J, Liu X, Wang Y, Guan Q, Zhou Y. 2020. Exosome-based tumor therapy: opportunities and challenges. Curr Drug Metab. 21(5):339–351. doi:10.2174/1389200221666200515103354.
  • Shehzad A, Islam SU, Shahzad R, Khan S, Lee YS. 2021. Extracellular vesicles in cancer diagnostics and therapeutics. Pharmacol Ther. 223:107806. doi:10.1016/j.pharmthera.2021.107806.
  • Takasugi M. 2018. Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell. 17(2):e12734. doi:10.1111/acel.12734.
  • Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. 2018. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 188:1–11. doi:10.1016/j.pharmthera.2018.02.013.
  • Jabalee J, Towle R, Garnis C. 2018. The role of extracellular vesicles in cancer: cargo, function, and therapeutic implications. Cells. 7(8):93. doi:10.3390/cells7080093.
  • Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C, Fan Q, Wei S, Li H, Liu J. 2019. Long non-coding rna hotair promotes exosome secretion by regulating rab35 and snap23 in hepatocellular carcinoma. Mol Cancer. 18(1):78. doi:10.1186/s12943-019-0990-6.
  • Zou W, Lai M, Zhang Y, Zheng L, Xing Z, Li T, Zou Z, Song Q, Zhao X, Xia L, et al. 2019. Exosome release is regulated by mtorc1. Adv Sci (Weinh). 6(3):1801313. doi:10.1002/advs.201801313.
  • Lal CV, Olave N, Travers C, Rezonzew G, Dolma K, Simpson A, Halloran B, Aghai Z, Das P, Sharma N, et al. Exosomal microrna predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCI Insight. 2018;3(5). doi:10.1172/jci.insight.93994.
  • Anel A, Gallego-Lleyda A, De Miguel D, Naval J, Martinez-Lostao L. 2019. Role of exosomes in the regulation of t-cell mediated immune responses and in autoimmune disease. Cells. 8(2):154. doi:10.3390/cells8020154.
  • Almeida VH, Rondon AMR, Gomes T, Monteiro RQ. 2019. Novel aspects of extracellular vesicles as mediators of cancer-associated thrombosis. Cells. 8(7):716. doi:10.3390/cells8070716.
  • Rao PSS, O’Connell K, Finnerty TK. 2018. Potential role of extracellular vesicles in the pathophysiology of drug addiction. Mol Neurobiol. 55(8):6906–6913. doi:10.1007/s12035-018-0912-4.
  • Qu Z, Wu J, Wu J, Luo D, Jiang C, Ding Y. 2016. Exosomes derived from hcc cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res. 35(1):159. doi:10.1186/s13046-016-0430-z.
  • Srivastava A, Amreddy N, Pareek V, Chinnappan M, Ahmed R, Mehta M, Razaq M, Munshi A, Ramesh R. 2020. Progress in extracellular vesicle biology and their application in cancer medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 12(4):e1621. doi:10.1002/wnan.1621.
  • Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S, Moriyama M. 2019. Exosomes and hepatocellular carcinoma: from bench to bedside. Int J Mol Sci. 20(6):1406. doi:10.3390/ijms20061406.
  • Aparicio S, Mardis E. 2014. Tumor heterogeneity: next-generation sequencing enhances the view from the pathologist’s microscope. Genome Biol. 15(9):463. doi:10.1186/s13059-014-0463-6.
  • Kohama I, Kosaka N, Chikuda H, Ochiya T. 2019. An insight into the roles of micrornas and exosomes in sarcoma. Cancers (Basel). 11(3):428. doi:10.3390/cancers11030428.
  • Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. 2019. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18(1):75. doi:10.1186/s12943-019-0991-5.
  • Ji Q, Zhang C, Sun X, Li Q. 2018. Circular rnas function as competing endogenous rnas in multiple types of cancer. Oncol Lett. 15(1):23–30. doi:10.3892/ol.2017.7348.
  • Tutar L, Ozgur A, Tutar Y. 2018. Involvement of mirnas and pseudogenes in cancer. Methods Mol Biol. 1699:45–66. doi:10.1007/978-1-4939-7435-1_3.
  • Tang H, Zhao H, Yu Z-Y, Feng X, Fu B-S, Qiu C-H, Zhang J-W. 2019. MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/β-catenin signaling pathway. Dig Liver Dis. 51(9):1314–1322. doi:10.1016/j.dld.2019.02.012.
  • Sun JF, Zhang D, Gao CJ, Zhang YW, Dai QS. 2019. Exosome-mediated mir-155 transfer contributes to hepatocellular carcinoma cell proliferation by targeting pten. Med Sci Monit Basic Res. 25:218–228. doi:10.12659/MSMBR.918134.
  • Sohn W, Kim J, Kang SH, Yang SR, Cho J-Y, Cho HC, Shim SG, Paik Y-H. 2015. Serum exosomal micrornas as novel biomarkers for hepatocellular carcinoma. Exp Mol Med. 47(9):e184. doi:10.1038/emm.2015.68.
  • Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, Shinden Y, Iguchi T, Eguchi H, Shirabe K, et al. 2015. Identification of a bona fide microrna biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer. 112(3):532–538. doi:10.1038/bjc.2014.621.
  • Cao SQ, Zheng H, Sun BC, Wang ZL, Liu T, Guo DH, Shen ZY. 2019. Long non-coding rna highly up-regulated in liver cancer promotes exosome secretion. World J Gastroenterol. 25(35):5283–5299. doi:10.3748/wjg.v25.i35.5283.
  • Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, et al. 2015. Cd90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing h19 lncrna. Mol Cancer. 14(1):155. doi:10.1186/s12943-015-0426-x.
  • Wilusz JE, Sharp PA. 2013. Molecular biology. A circuitous route to noncoding rna. Sci. 340(6131):440–441. doi:10.1126/science.1238522.
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. 2013. Natural rna circles function as efficient microrna sponges. Nat. 495(7441):384–388. doi:10.1038/nature11993.
  • Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al. 2019. Exosomal circrnas: biogenesis, effect and application in human diseases. Mol Cancer. 18(1):116. doi:10.1186/s12943-019-1041-z.
  • Chen LL, Yang L. 2015. Regulation of circrna biogenesis. RNA Biol. 12(4):381–388. doi:10.1080/15476286.2015.1020271.
  • Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo J, Zhang Y, Li H, Zhang Q, Yang Y, et al. 2019. Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a–MET pathway. EBioMedicine. 40:432–445. doi:10.1016/j.ebiom.2018.12.062.
  • Ahmed I, Karedath T, Andrews SS, Al-Azwani IK, Mohamoud YA, Querleu D, Rafii A, Malek JA. 2016. Altered expression pattern of circular rnas in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget. 7(24):36366–36381. doi:10.18632/oncotarget.8917.
  • Yu J, Xu QG, Wang ZG, Yang Y, Zhang L, Ma JZ, Sun SH, Yang F, Zhou WP. 2018. Circular rna csmarca5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol. 68(6):1214–1227. doi:10.1016/j.jhep.2018.01.012.
  • Huang X-Y, Huang Z-L, Huang J, Xu B, Huang X-Y, Xu Y-H, Zhou J, Tang Z-Y. 2020. Exosomal circrna-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 39(1):20. doi:10.1186/s13046-020-1529-9.
  • Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, Fan Q, Li J, Ning T, Tian F, et al. 2019. Exosome circrna secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related usp7. Oncogene. 38(15):2844–2859. doi:10.1038/s41388-018-0619-z.
  • Lin Y, Dong H, Deng W, Lin W, Li K, Xiong X, Guo Y, Zhou F, Ma C, Chen Y, et al. 2019. Evaluation of salivary exosomal chimeric golm1-naa35 rna as a potential biomarker in esophageal carcinoma. Clin Cancer Res. 25(10):3035–3045. doi:10.1158/1078-0432.CCR-18-3169.
  • Li P, Yu X, Han W, Kong Y, Bao W, Zhang J, Zhang W, Gu Y. 2019. Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis. ACS Sensors. 4(5):1433–1441. doi:10.1021/acssensors.9b00621.
  • Xu H, Dong X, Chen Y, Wang X. 2018. Serum exosomal hnrnph1 mrna as a novel marker for hepatocellular carcinoma. Clin Chem Lab Med. 56(3):479–484. doi:10.1515/cclm-2017-0327.
  • Sasaki K, Kohgo Y, Ohtake T. 2019. Splicing variant of hepcidin mrna. Vitam Horm. 110:131–141. doi:10.1016/bs.vh.2019.01.006.
  • Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, Gores G. 2016. Hepatocellular carcinoma. Nat Rev Dis Primers. 2:16018. doi:10.1038/nrdp.2016.18.
  • Lambert AW, Pattabiraman DR, Weinberg RA. 2017. Emerging biological principles of metastasis. Cell. 168(4):670–691. doi:10.1016/j.cell.2016.11.037.
  • Yang L-Y, Luo Q, Lu L, Zhu -W-W, Sun H-T, Wei R, Lin Z-F, Wang X-Y, Wang C-Q, Lu M, et al. 2020. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol. 13(1):3. doi:10.1186/s13045-019-0836-0.
  • Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, Travali S, Spandidos DA, Libra M. 2012. The tumor microenvironment in hepatocellular carcinoma (review). Int J Oncol. 40(6):1733–1747. doi:10.3892/ijo.2012.1408.
  • Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al. 2018. Tumor-derived exosomal mir-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 9(1):191. doi:10.1038/s41467-017-02583-0.
  • Zamarron BF, Chen W. 2011. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 7(5):651–658. doi:10.7150/ijbs.7.651.
  • Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG, Harris CC. 2018. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal mir-1246. Nat Commun. 9(1):771. doi:10.1038/s41467-018-03224-w.
  • Seo W, Eun HS, Kim SY, Yi H-S, Lee Y-S, Park S-H, Jang M-J, Jo E, Kim SC, Han Y-M, et al. 2016. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology. 64(2):616–631. doi:10.1002/hep.28644.
  • Wang X, Shen H, Zhangyuan G, Huang R, Zhang W, He Q, Jin K, Zhuo H, Zhang Z, Wang J, et al. 2018. 14-3-3zeta delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating t lymphocytes. Cell Death Dis. 9(2):159. doi:10.1038/s41419-017-0180-7.
  • Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M, Zhou F. 2020. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 17(4):323–334. doi:10.1038/s41423-020-0391-1.
  • Ye Y, Xu Y, Lai Y, He W, Li Y, Wang R, Luo X, Chen R, Chen T. 2018. Long non-coding rna cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering m1/m2 macrophage polarization. J Cell Biochem. 119(3):2951–2963. doi:10.1002/jcb.26509.
  • Cheng L, Liu J, Liu Q, Liu Y, Fan L, Wang F, Yu H, Li Y, Bu L, Li X, et al. 2017. Exosomes from melatonin treated hepatocellularcarcinoma cells alter the immunosupression status through stat3 pathway in macrophages. Int J Biol Sci. 13(6):723–734. doi:10.7150/ijbs.19642.
  • Li X, Lei Y, Wu M, Li N. Regulation of macrophage activation and polarization by hcc-derived exosomal lncrna tuc339. Int J Mol Sci. 2018;19(10). doi:10.3390/ijms19102958.
  • Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, Wang F, Li X, Liu Q, Li Y, et al. 2019. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology. 70(1):241–258. doi:10.1002/hep.30607.
  • Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, Li C, Cong Y, Kimberly R, Grizzle WE, et al. 2007. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol. 178(11):6867–6875. doi:10.4049/jimmunol.178.11.6867.
  • Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C, Du Z, Yin H. 2016. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology. 64(2):456–472. doi:10.1002/hep.28549.
  • Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H, Yin H. 2017. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 67(4):739–748. doi:10.1016/j.jhep.2017.05.019.
  • Zhang P-F, Gao C, Huang X-Y, Lu J-C, Guo X-J, Shi G-M, Cai J-B, Ke A-W. 2020. Cancer cell-derived exosomal circuhrf1 induces natural killer cell exhaustion and may cause resistance to anti-pd1 therapy in hepatocellular carcinoma. Mol Cancer. 19(1):110. doi:10.1186/s12943-020-01222-5.
  • Tian X, Zhou D, Chen L, Tian Y, Zhong B, Cao Y, Dong Q, Zhou M, Yan J, Wang Y, et al. 2018. Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via pi3k/akt signaling pathway. Cell Death Dis. 9(2):54. doi:10.1038/s41419-017-0088-2.
  • Aiello NM, Kang Y. 2019. Context-dependent emt programs in cancer metastasis. J Exp Med. 216(5):1016–1026. doi:10.1084/jem.20181827.
  • Lei Y, Yan W, Lin Z, Liu J, Tian D, Han P. 2020. Comprehensive analysis of partial epithelial mesenchymal transition-related genes in hepatocellular carcinoma. J Cell Mol Med. doi:10.1111/jcmm.16099.
  • Li S, Liu Y, Bai Y, Chen M, Cheng D, Wu M, Xia J. 2020. Rhof promotes hepatocellular carcinoma metastasis by altering the metabolic status of cancer cells via rab3d. Hepatology. doi:10.1002/hep.31641.
  • Chen L, Guo P, He Y, Chen Z, Chen L, Luo Y, Qi L, Liu Y, Wu Q, Cui Y, et al. 2018. Hcc-derived exosomes elicit hcc progression and recurrence by epithelial-mesenchymal transition through mapk/erk signalling pathway. Cell Death Dis. 9(5):513. doi:10.1038/s41419-018-0534-9.
  • Zhang Z, Li X, Sun W, Yue S, Yang J, Li J, Ma B, Wang J, Yang X, Pu M, et al. 2017. Loss of exosomal mir-320a from cancer-associated fibroblasts contributes to hcc proliferation and metastasis. Cancer Lett. 397:33–42. doi:10.1016/j.canlet.2017.03.004.
  • Yang B, Feng X, Liu H, Tong R, Wu J, Li C, Yu H, Chen Y, Cheng Q, Chen J, et al. 2020. High-metastatic cancer cells derived exosomal mir92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating pten/akt pathway in hepatocellular carcinoma. Oncogene. 39(42):6529–6543. doi:10.1038/s41388-020-01450-5.
  • Tian XP, Wang CY, Jin XH, Li M, Wang FW, Huang WJ, Yun JP, Xu RH, Cai QQ, Xie D. 2019. Acidic microenvironment up-regulates exosomal mir-21 and mir-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 9(7):1965–1979. doi:10.7150/thno.30958.
  • Lin X-J, Fang J-H, Yang X-J, Zhang C, Yuan Y, Zheng L, Zhuang S-M. 2018. Hepatocellular carcinoma cell-secreted exosomal microRNA-210 promotes angiogenesis in vitro and in vivo. Mol Ther Nucleic Acids. 11:243–252. doi:10.1016/j.omtn.2018.02.014.
  • Li R, Wang Y, Zhang X, Feng M, Ma J, Li J, Yang X, Fang F, Xia Q, Zhang Z, et al. 2019. Exosome-mediated secretion of loxl4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol Cancer. 18(1):18. doi:10.1186/s12943-019-0948-8.
  • Xie JY, Wei JX, Lv LH, Han QF, Yang WB, Li GL, Wang PX, Wu SB, Duan JX, Zhuo WF, et al. 2020. Angiopoietin-2 induces angiogenesis via exosomes in human hepatocellular carcinoma. Cell Commun Signal. 18(1):46. doi:10.1186/s12964-020-00535-8.
  • Moh-Moh-Aung A, Fujisawa M, Ito S, Katayama H, Ohara T, Ota Y, Yoshimura T, Matsukawa A. 2020. Decreased mir-200b-3p in cancer cells leads to angiogenesis in hcc by enhancing endothelial erg expression. Sci Rep. 10(1):10418. doi:10.1038/s41598-020-67425-4.
  • Xiao L, Hou Y, He H, Cheng S, Hou Y, Jin H, Song X, Nie G, Hou Y. 2020. A novel targeted delivery system for drug-resistant hepatocellular carcinoma therapy. Nanoscale. 12(32):17029–17044. doi:10.1039/d0nr01908a.
  • Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B, Xiao Z. 2020. Engineered exosomes for targeted co-delivery of mir-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 18(1):10. doi:10.1186/s12951-019-0563-2.
  • Kachalaki S, Ebrahimi M, Mohamed Khosroshahi L, Mohammadinejad S, Baradaran B. 2016. Cancer chemoresistance; biochemical and molecular aspects: a brief overview. Eur J Pharm Sci. 89:20–30. doi:10.1016/j.ejps.2016.03.025.
  • Bagrodia S, Smeal T, Abraham RT. 2012. Mechanisms of intrinsic and acquired resistance to kinase-targeted therapies. Pigment Cell Melanoma Res. 25(6):819–831. doi:10.1111/pcmr.12007.
  • Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. 2017. Cancer stem cells: the root of tumor recurrence and metastases. Semin Cancer Biol. 44:10–24. doi:10.1016/j.semcancer.2017.02.011.
  • Nio K, Yamashita T, Kaneko S. 2017. The evolving concept of liver cancer stem cells. Mol Cancer. 16(1):4. doi:10.1186/s12943-016-0572-9.
  • Yu L, Xu H, Zhang S, Chen J, Yu Z. 2020. Sdc1 promotes cisplatin resistance in hepatic carcinoma cells via pi3k-akt pathway. Hum Cell. 33(3):721–729. doi:10.1007/s13577-020-00362-6.
  • Ding H, Wang Y, Zhang H. 2020. Ccnd1 silencing suppresses liver cancer stem cell differentiation and overcomes 5-fluorouracil resistance in hepatocellular carcinoma. J Pharmacol Sci. 143(3):219–225. doi:10.1016/j.jphs.2020.04.006.
  • Wu Q, Zhou L, Lv D, Zhu X, Tang H. 2019. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 12(1):53. doi:10.1186/s13045-019-0739-0.
  • Wang J, Yeung BZ, Cui M, Peer CJ, Lu Z, Figg WD, Guillaume Wientjes M, Woo S, Au JL. 2017. Exosome is a mechanism of intercellular drug transfer: application of quantitative pharmacology. J Control Release. 268:147–158. doi:10.1016/j.jconrel.2017.10.020.
  • Sharma A. 2017. Chemoresistance in cancer cells: exosomes as potential regulators of therapeutic tumor heterogeneity. Nanomedicine (Lond). 12(17):2137–2148. doi:10.2217/nnm-2017-0184.
  • Fu X, Liu M, Qu S, Ma J, Zhang Y, Shi T, Wen H, Yang Y, Wang S, Wang J, et al. 2018. Exosomal microrna-32-5p induces multidrug resistance in hepatocellular carcinoma via the pi3k/akt pathway. J Exp Clin Cancer Res. 37(1):52. doi:10.1186/s13046-018-0677-7.
  • Zhang K, Shao CX, Zhu JD, Lv XL, Tu CY, Jiang C, Shang MJ. Exosomes function as nanoparticles to transfer mir-199a-3p to reverse chemoresistance to cisplatin in hepatocellular carcinoma. Biosci Rep. 2020;40(7). doi:10.1042/BSR20194026.
  • Jena BC, Mandal M. 2021. The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: an insight towards tumor-microenvironment interaction. Biochim Biophys Acta Rev Cancer. 1875(1):188488. doi:10.1016/j.bbcan.2020.188488.
  • Meena AS, Sharma A, Kumari R, Mohammad N, Singh SV, Bhat MK. 2013. Inherent and acquired resistance to paclitaxel in hepatocellular carcinoma: molecular events involved. PLoS One. 8(4):e61524. doi:10.1371/journal.pone.0061524.
  • Khamisipour G, Jadidi-Niaragh F, Jahromi AS, Zandi K, Hojjat-Farsangi M. 2016. Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol. 37(8):10021–10039. doi:10.1007/s13277-016-5059-1.
  • Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. 2018. Revisiting the role of abc transporters in multidrug-resistant cancer. Nat Rev Cancer. 18(7):452–464. doi:10.1038/s41568-018-0005-8.
  • Huang M, He M, Guo Y, Li H, Shen S, Xie Y, Li X, Xiao H, Fang L, Li D, et al. 2020. The influence of immune heterogeneity on the effectiveness of immune checkpoint inhibitors in multifocal hepatocellular carcinomas. Clin Cancer Res. 26(18):4947–4957. doi:10.1158/1078-0432.CCR-19-3840.
  • Llovet JM, Montal R, Sia D, Finn RS. 2018. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 15(10):599–616. doi:10.1038/s41571-018-0073-4.
  • El Dika I, Makki I, Abou-Alfa GK. Hepatocellular carcinoma, novel therapies on the horizon. Chin Clin Oncol. 2021;10(1). doi:10.21037/cco-20-113.
  • Schulze K, Imbeaud S, Letouze E, Alexandrov LB, Calderaro J, Rebouissou S, Couchy G, Meiller C, Shinde J, Soysouvanh F, et al. 2015. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 47(5):505–511. doi:10.1038/ng.3252.
  • Sun N, Lee YT, Zhang RY, Kao R, Teng PC, Yang Y, Yang P, Wang JJ, Smalley M, Chen PJ, et al. 2020. Purification of hcc-specific extracellular vesicles on nanosubstrates for early hcc detection by digital scoring. Nat Commun. 11(1):4489. doi:10.1038/s41467-020-18311-0.
  • Zhang YF, Shi JB, Li C. 2019. Small extracellular vesicle loading systems in cancer therapy: current status and the way forward. Cytotherapy. 21(11):1122–1136. doi:10.1016/j.jcyt.2019.10.002.
  • Kooijmans SA, Vader P, Van Dommelen SM, Van Solinge WW, Schiffelers RM. 2012. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 7:1525–1541. doi:10.2147/IJN.S29661.
  • Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, et al. 2015. Applying extracellular vesicles based therapeutics in clinical trials - an isev position paper. J Extracell Vesicles. 4(1):30087. doi:10.3402/jev.v4.30087.
  • Hood JL, Scott MJ, Wickline SA. 2014. Maximizing exosome colloidal stability following electroporation. Anal Biochem. 448:41–49. doi:10.1016/j.ab.2013.12.001.
  • Kooijmans SA, Aleza CG, Roffler SR, Van Solinge WW, Vader P, Schiffelers RM. 2016. Display of gpi-anchored anti-egfr nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles. 5(1):31053. doi:10.3402/jev.v5.31053.
  • Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. 2014. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 35(7):2383–2390. doi:10.1016/j.biomaterials.2013.11.083.
  • Ruf B, Heinrich B, Greten TF. 2020. Immunobiology and immunotherapy of hcc: spotlight on innate and innate-like immune cells. Cell Mol Immunol. doi:10.1038/s41423-020-00572-w.
  • Zhang Q, Chen Y, Bai X, Liang T. 2020. Immune checkpoint blockade therapy for hepatocellular carcinoma: clinical challenges and considerations. Front Oncol. 10:590058. doi:10.3389/fonc.2020.590058.
  • Longo V, Gnoni A, Casadei Gardini A, Pisconti S, Licchetta A, Scartozzi M, Memeo R, Palmieri VO, Aprile G, Santini D, et al. 2017. Immunotherapeutic approaches for hepatocellular carcinoma. Oncotarget. 8(20):33897–33910. doi:10.18632/oncotarget.15406.
  • Heymann F, Tacke F. 2016. Immunology in the liver–from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 13(2):88–110. doi:10.1038/nrgastro.2015.200.
  • Bottcher JP, Knolle PA, Stabenow D. 2011. Mechanisms balancing tolerance and immunity in the liver. Dig Dis. 29(4):384–390. doi:10.1159/000329801.
  • Tkach M, Thery C. 2016. Communication by extracellular vesicles: where we are and where we need to go. Cell. 164(6):1226–1232. doi:10.1016/j.cell.2016.01.043.
  • Colombo M, Raposo G, Thery C. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30(1):255–289. doi:10.1146/annurev-cellbio-101512-122326.
  • Slomka A, Mocan T, Wang B, Nenu I, Urban SK, Gonzales-Carmona M, Igh S-W, Lukacs-Kornek V, Strassburg CP, Sparchez Z, et al. 2020. Evs as potential new therapeutic tool/target in gastrointestinal cancer and hcc. Cancers (Basel). 12(10):3019. doi:10.3390/cancers12103019.
  • Ciullo A, Biemmi V, Milano G, Bolis S, Cervio E, Fertig ET, Gherghiceanu M, Moccetti T, Camici GG, Vassalli G, et al. 2019. Exosomal expression of cxcr4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci. 20(3):468. doi:10.3390/ijms20030468.
  • Khan N, Maurya S, Bammidi S, Jayandharan GR. 2020. Aav6 vexosomes mediate robust suicide gene delivery in a murine model of hepatocellular carcinoma. Mol Ther Methods Clin Dev. 17:497–504. doi:10.1016/j.omtm.2020.03.006.
  • Fu Q, Zhang Q, Lou Y, Yang J, Nie G, Chen Q, Chen Y, Zhang J, Wang J, Wei T, et al. 2018. Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via smad3 in liver cancer. Oncogene. 37(47):6105–6118. doi:10.1038/s41388-018-0391-0.
  • Zhang J, Lu S, Zhou Y, Meng K, Chen Z, Cui Y, Shi Y, Wang T, He QY. 2017. Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes. Proteomics. 17:13–14. doi:10.1002/pmic.201700103.
  • He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N. 2015. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and rnas. Carcinogenesis. 36(9):1008–1018. doi:10.1093/carcin/bgv081.
  • Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature. 527(7578):329–335. doi:10.1038/nature15756.
  • Li M, Lu Y, Xu Y, Wang J, Zhang C, Du Y, Wang L, Li L, Wang B, Shen J, et al. 2018. Horizontal transfer of exosomal cxcr4 promotes murine hepatocarcinoma cell migration, invasion and lymphangiogenesis. Gene. 676:101–109. doi:10.1016/j.gene.2018.07.018.
  • Wang S, Xu M, Li X, Su X, Xiao X, Keating A, Zhao RC. 2018. Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol. 11(1):82. doi:10.1186/s13045-018-0625-1.
  • Gai X, Tang B, Liu F, Wu Y, Wang F, Jing Y, Huang F, Jin D, Wang L, Zhang H. 2019. Mtor/ mir-145-regulated exosomal golm1 promotes hepatocellular carcinoma through augmented gsk-3beta/mmps. J Genet Genomics. 46(5):235–245. doi:10.1016/j.jgg.2019.03.013.
  • Huang A, Dong J, Li S, Wang C, Ding H, Li H, Su X, Ge X, Sun L, Bai C, et al. 2015. Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells. Int J Biol Sci. 11(8):961–969. doi:10.7150/ijbs.11943.
  • Ye L, Zhang Q, Cheng Y, Chen X, Wang G, Shi M, Zhang T, Cao Y, Pan H, Zhang L, et al. 2018. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J Immunother Cancer. 6(1):145. doi:10.1186/s40425-018-0451-6.
  • Alzahrani FA, El-Magd MA, Abdelfattah-Hassan A, Saleh AA, Saadeldin IM, El-Shetry ES, Badawy AA, Alkarim S. 2018. Potential effect of exosomes derived from cancer stem cells and mscs on progression of den-induced hcc in rats. Stem Cells Int. 2018:8058979. doi:10.1155/2018/8058979.
  • Zhao S, Li J, Zhang G, Wang Q, Wu C, Zhang Q, Wang H, Sun P, Xiang R, Yang S. 2019. Exosomal mir-451a functions as a tumor suppressor in hepatocellular carcinoma by targeting lpin1. Cell Physiol Biochem. 53(1):19–35. doi:10.33594/000000118.
  • Wang G, Zhao W, Wang H, Qiu G, Jiang Z, Wei G, Li X. 2019. Exosomal mir-744 inhibits proliferation and sorafenib chemoresistance in hepatocellular carcinoma by targeting pax2. Med Sci Monit. 25:7209–7217. doi:10.12659/MSM.919219.
  • Cui Y, Xu HF, Liu MY, Xu YJ, He JC, Zhou Y, Cang SD. 2019. Mechanism of exosomal microrna-224 in development of hepatocellular carcinoma and its diagnostic and prognostic value. World J Gastroenterol. 25(15):1890–1898. doi:10.3748/wjg.v25.i15.1890.
  • Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, Shi X. 2018. Hepatocellular carcinoma-derived exosomal mirna-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res. 37(1):324. doi:10.1186/s13046-018-0965-2.
  • Qu Z, Wu J, Wu J, Ji A, Qiang G, Jiang Y, Jiang C, Ding Y. 2017. Exosomal mir-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis. Oncotarget. 8(46):80666–80678. doi:10.18632/oncotarget.20881.
  • Yugawa K, Yoshizumi T, Mano Y, Itoh S, Harada N, Ikegami T, Kohashi K, Oda Y, Mori M. 2021. Cancer-associated fibroblasts promote hepatocellular carcinoma progression through downregulation of exosomal miR-150-3p. Eur J Surg Oncol. 47(2):384–393. doi:10.1016/j.ejso.2020.08.002.
  • Tang J, Li Y, Liu K, Zhu Q, Yang WH, Xiong LK, Guo DL. 2018. Exosomal mir-9-3p suppresses hbgf-5 expression and is a functional biomarker in hepatocellular carcinoma. Minerva Med. 109(1):15–23. doi:10.23736/S0026-4806.17.05167-9.
  • Fang J-H, Zhang Z-J, Shang L-R, Luo Y-W, Lin Y-F, Yuan Y, Zhuang S-M. 2018. Hepatoma cell-secreted exosomal microrna-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology. 68(4):1459–1475. doi:10.1002/hep.29920.
  • Xiong L, Zhen S, Yu Q, Gong Z. 2017. Hcv-e2 inhibits hepatocellular carcinoma metastasis by stimulating mast cells to secrete exosomal shuttle micrornas. Oncol Lett. 14(2):2141–2146. doi:10.3892/ol.2017.6433.
  • Han Q, Zhao H, Jiang Y, Yin C, Zhang J. 2019. Hcc-derived exosomes: critical player and target for cancer immune escape. Cells. 8(6):6. doi:10.3390/cells8060558.
  • Xue X, Wang X, Zhao Y, Hu R, Qin L. 2018. Exosomal mir-93 promotes proliferation and invasion in hepatocellular carcinoma by directly inhibiting timp2/tp53inp1/cdkn1a. Biochem Biophys Res Commun. 502(4):515–521. doi:10.1016/j.bbrc.2018.05.208.
  • Nakano T, Chen IH, Wang CC, Chen PJ, Tseng HP, Huang KT, Hu TH, Li LC, Goto S, Cheng YF. 2019. et al. Circulating exosomal mir-92b: its role for cancer immunoediting and clinical value for prediction of posttransplant hepatocellular carcinoma recurrence. Am J Transplant. 19(12):3250–3262. doi:10.1111/ajt.15490.
  • Yu Y, Min Z, Zhihang Z, Linhong M, Tao R, Yan L, Song H. 2019. Hypoxia-induced exosomes promote hepatocellular carcinoma proliferation and metastasis via mir-1273f transfer. Exp Cell Res. 385(1):111649. doi:10.1016/j.yexcr.2019.111649.
  • Liu H, Chen W, Zhi X, Chen EJ, Wei T, Zhang J, Shen J, Hu LQ, Zhao B, Feng XH, et al. 2018. Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring mirna-25-5p to enhance cell motility. Oncogene. 37(36):4964–4978. doi:10.1038/s41388-018-0309-x.
  • Wang D, Xing N, Yang T, Liu J, Zhao H, He J, Ai Y, Yang J. 2020. Exosomal lncrna h19 promotes the progression of hepatocellular carcinoma treated with propofol via mir-520a-3p/limk1 axis. Cancer Med. 9(19):7218–7230. doi:10.1002/cam4.3313.
  • Yao Z, Jia C, Tai Y, Liang H, Zhong Z, Xiong Z, Deng M, Zhang Q. 2020. Serum exosomal long noncoding rnas lnc-fam72d-3 and lnc-epc1-4 as diagnostic biomarkers for hepatocellular carcinoma. Aging (Albany NY). 12(12):11843–11863. doi:10.18632/aging.103355.
  • Li Y, Zhang X, Zheng Q, Zhang Y, Ma Y, Zhu C, Yang L, Peng X, Wang Q, Wang B, et al. 2020. Yap1 inhibition in huvecs is associated with released exosomes and increased hepatocarcinoma invasion and metastasis. Mol Ther Nucleic Acids. 21:86–97. doi:10.1016/j.omtn.2020.05.021.
  • Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al. 2014. A long noncoding rna activated by tgf-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 25(5):666–681. doi:10.1016/j.ccr.2014.03.010.
  • Su Y, Lv X, Yin W, Zhou L, Hu Y, Zhou A, Qi F. 2019. CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging (Albany NY). 11(19):8182–8203. doi:10.18632/aging.102312.
  • Chen W, Quan Y, Fan S, Wang H, Liang J, Huang L, Chen L, Liu Q, He P, Ye Y. 2020. Exosome-transmitted circular rna hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett. 475:119–128. doi:10.1016/j.canlet.2020.01.022.
  • Lai Z, Wei T, Li Q, Wang X, Zhang Y, Zhang S. 2020. Exosomal circfblim1 promotes hepatocellular carcinoma progression and glycolysis by regulating the mir-338/lrp6 axis. Cancer Biother Radiopharm. doi:10.1089/cbr.2020.3564.