1,679
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

High tumor amplification burden is associated with TP53 mutations in the pan-cancer setting

, , ORCID Icon & ORCID Icon
Pages 1-6 | Received 23 Jun 2022, Accepted 21 Sep 2022, Published online: 28 Sep 2022

References

  • Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16(11):2598–2608. doi:10.1158/1535-7163.MCT-17-0386.
  • Maciejko L, Smalley M, Goldman A. Cancer immunotherapy and personalized medicine: emerging technologies and biomarker-based approaches. J Mol Biomark Diagn. 2017;8(5). doi:10.4172/2155-9929.1000350.
  • Adashek JJ, Subbiah V, Kurzrock R. From tissue-agnostic to n-of-one therapies: (r)evolution of the precision paradigm. Trends Cancer. 2021;7(1):15–28. doi:10.1016/j.trecan.2020.08.009.
  • Kato S, Kim KH, Lim HJ, Boichard A, Nikanjam M, Weihe E, Kuo DJ, Eskander RN, Goodman A, Galanina N, et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision n-of-one strategy. Nat Commun. 2020;11(1):4965. doi:10.1038/s41467-020-18613-3.
  • Sicklick JK, Kato S, Okamura R, Patel H, Nikanjam M, Fanta PT, Hahn ME, De P, Williams C, Guido J, et al. Molecular profiling of advanced malignancies guides first-line n-of-1 treatments in the i-predict treatment-naive study. Genome Med. 2021;13(1):155. doi:10.1186/s13073-021-00969-w.
  • Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 2021;39(2):154–173. doi:10.1016/j.ccell.2020.10.001.
  • Debatisse M, Malfoy B. Gene amplification mechanisms. Adv Exp Med Biol. 2005; 570:343–361.
  • Smith KA, Agarwal ML, Chernov MV, Chernova OB, Deguchi Y, Ishizaka Y, Patterson TE, Poupon MF, Stark GR. Regulation and mechanisms of gene amplification. Philos Trans R Soc Lond B Biol Sci. 1995;347(1319):49–56.
  • Matsui A, Ihara T, Suda H, Mikami H, Semba K. Gene amplification: mechanisms and involvement in cancer. Biomol Concepts. 2013;4(6):567–582. doi:10.1515/bmc-2013-0026.
  • Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22(8):447–455. doi:10.1016/j.tig.2006.06.007.
  • Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, Ji HP, Maley CC. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med. 2016;22(1):105–113. doi:10.1038/nm.3984.
  • Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, et al. Integrated analysis of tp53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 2019;28(11):3010. doi:10.1016/j.celrep.2019.08.061.
  • Li AM, Boichard A, Kurzrock R. Mutated tp53 is a marker of increased VEGF expression: analysis of 7,525 pan-cancer tissues. Cancer Biol Ther. 2020;21(1):95–100. doi:10.1080/15384047.2019.1665956.
  • Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989;342(6250):705–708. doi:10.1038/342705a0.
  • Wheler JJ, Janku F, Naing A, Li Y, Stephen B, Zinner R, Subbiah V, Fu S, Karp D, Falchook GS, et al. Tp53 alterations correlate with response to VEGF/vegfr inhibitors: implications for targeted therapeutics. Mol Cancer Ther. 2016;15(10):2475–2485. doi:10.1158/1535-7163.MCT-16-0196.
  • Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1994;22(17):3551–3555.
  • Leslie KK, Filiaci VL, Mallen AR, Thiel KW, Devor EJ, Moxley K, Richardson D, Mutch D, Secord AA, Tewari KS, et al. 2021. Mutated p53 portends improvement in outcomes when bevacizumab is combined with chemotherapy in advanced/recurrent endometrial cancer: an nrg oncology study. Gynecol Oncol. 161(1):113–121.
  • Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25(1):133–143. doi:10.1038/cdd.2017.174.
  • Adashek JJ, Kato S, Parulkar R, Szeto CW, Sanborn JZ, Vaske CJ, Benz SC, Reddy SK, Kurzrock R. Transcriptomic silencing as a potential mechanism of treatment resistance. JCI Insight. 2020;5(11). doi:10.1172/jci.insight.134824.
  • Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, Stewart C, Fereday S, Caldas C, Defazio A, et al. Driver mutations in tp53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56. doi:10.1002/path.2696.
  • Burtness B, Deneka A, Baca Y, Serebriiskii I, Parker MI, Nicolas E, Lee JW, Wise-Draper T, Sukari A, Somer BG, et al. Correlation of tumor mutational burden (tmb) with cdkn2a and tp53 mutation in HPV-negative head and neck squamous cell carcinoma (hnscc). J Clin Oncol. 2020;38(15_suppl):6552. doi:10.1200/JCO.2020.38.15_suppl.6552.
  • Boichard A, Lippman SM, Kurzrock R. Therapeutic implications of cancer gene amplifications without mRNA overexpression: silence may not be golden. J Hematol Oncol. 2021;14(1):201. doi:10.1186/s13045-021-01211-1.
  • Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. Gistic2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41. doi:10.1186/gb-2011-12-4-r41.