1,782
Views
42
CrossRef citations to date
0
Altmetric
Reports

Role of Hexokinase-1 in the survival of HIV-1-infected macrophages

, , , , , & show all
Pages 980-989 | Received 26 Sep 2014, Accepted 07 Jan 2015, Published online: 01 Apr 2015

References

  • Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 2013; 120:163-84; PMID:24070384; http://dx.doi.org/10.1016/B978-0-12-417028-5.00006-5
  • Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986; 233:1089-93; PMID:3016903; http://dx.doi.org/10.1126/science.3016903
  • Cosenza MA, Zhao ML, Lee SC. HIV-1 expression protects macrophages and microglia from apoptotic death. Neuropathol Appl Neurobiol. 2004; 30:478-90; PMID:15488024; http://dx.doi.org/10.1111/j.1365-2990.2004.00563.x
  • Swingler S, Mann AM, Zhou J, Swingler C, Stevenson M. Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein. PLoS Pathog. 2007; 3:1281-90; PMID:17907802; http://dx.doi.org/10.1371/journal.ppat.0030134
  • Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology. 2010; 7:32; PMID:20380694; http://dx.doi.org/10.1186/1742-4690-7-32
  • Busca A, Saxena M, Kumar A. Critical role for antiapoptotic Bcl-xL and Mcl-1 in human macrophage survival and cellular IAP1/2 (cIAP1/2) in resistance to HIV-Vpr-induced apoptosis. J Biol Chem. 2012; 287:15118-133; PMID:22403404; http://dx.doi.org/10.1074/jbc.M111.312660
  • Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, Ellis R, Cherner M, Grant I, Masliah E. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013; 80:1415-23; PMID:23486877; http://dx.doi.org/10.1212/WNL.0b013e31828c2e9e
  • Lamers SL, Fogel GB, Nolan DJ, McGrath MS, Salemi M. HIV-associated neuropathogenesis: a systems biology perspective for modeling and therapy. Biosystems. 2014; 119:53-61; PMID:24732754; http://dx.doi.org/10.1016/j.biosystems.2014.04.002
  • Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res. 2013; 87:183-240; PMID:23809924; http://dx.doi.org/10.1016/B978-0-12-407698-3.00006-5
  • Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K, Merali S. HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One. 2013;8:e68376; PMID:23874603; http://dx.doi.org/10.1371/journal.pone.0068376
  • Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003; 206:2049-57; PMID:12756287; http://dx.doi.org/10.1242/jeb.00241
  • Xie GC, Wilson JE. Rat brain hexokinase: the hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer. Arch Biochem Biophys 1988; 267:803-10; PMID:3214181; http://dx.doi.org/10.1016/0003-9861(88)90090-2
  • Sui D, Wilson JE. Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein. Arch Biochem Biophys 1997; 345:111-25; PMID:9281318; http://dx.doi.org/10.1006/abbi.1997.0241
  • Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002; 84:153-166; PMID:12022946; http://dx.doi.org/10.1016/S0300-9084(02)01375-5
  • Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem. 2002; 277:7610-18; PMID:11751859; http://dx.doi.org/10.1074/jbc.M109950200
  • Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondriamediated apoptotic cell death. Biochem J 2004; 377:347-55; PMID:14561215; http://dx.doi.org/10.1042/BJ20031465
  • Cassol E, Alfano M, Biswas P, Poli G. Monocyte-derived macrophages and myeloid cell lines as targets of HIV-1 replication and persistence. J Leukoc Biol. 2006; 80:1018-30; PMID:16946020; http://dx.doi.org/10.1189/jlb.0306150
  • Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 1987; 238:800-02; PMID:3313729; http://dx.doi.org/10.1126/science.3313729
  • Bristow CL, Wolkowicz R, Trucy M, Franklin A, Di Meo F, Kozlowski MT, Winston R, Arnold RR. NF-kappaB signaling, elastase localization, and phagocytosis differ in HIV-1 permissive and nonpermissive U937 clones. J Immunol. 2008; 180:492-99; PMID:18097051; http://dx.doi.org/10.4049/jimmunol.180.1.492
  • Fernandez Larrosa PN, Croci DO, Riva DA, Bibini M, Luzzi R, Saracco M, Mersich SE, Rabinovich GA, Martinez Peralta L. Apoptosis resistance in HIV-1 persistently-infected cells is independent of active viral replication and involves modulation of the apoptotic mitochondrial pathway. Retrovirology. 2008; 5:19; PMID:18261236; http://dx.doi.org/10.1186/1742-4690-5-19
  • Olivares I, Ballester A, Lombardia L, Dominguez O, Lopez-Galindez C. Human immunodeficiency virus type 1 chronic infection is associated with different gene expression in MT-4, H9 and U937 cell lines. Virus Res. 2009; 139:22-31; PMID:19000723; http://dx.doi.org/10.1016/j.virusres.2008.09.010
  • Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004; 16:819-30; PMID:15574336; http://dx.doi.org/10.1016/j.molcel.2004.11.014
  • Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H (2008) Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol. 2008; 28:1007-17; PMID:18039843; http://dx.doi.org/10.1128/MCB.00224-07
  • Wu R, Wyatt E, Chawla K, Tran M, Ghanefar M, Laakso M, Epting CL, Ardehali H. Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production. EMBO Mol Med. 2012; 4:633-46; PMID:22517678; http://dx.doi.org/10.1002/emmm.201200240
  • Connor RI, Chen BK, Choe S, Landau NR (1995) Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 1995 206:935-44; PMID:7531918; http://dx.doi.org/10.1006/viro.1995.1016
  • Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, Sollott SJ, Forte M, Bernardi P, Rasola A. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One. 2008 19;3(3):e1852; PMID:18350175; http://dx.doi.org/10.1371/journal.pone.0001852
  • Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 2005; 25:4683-96; http://dx.doi.org/10.1038/sj.onc.1209595
  • Nicholson DW, Thornberry NA. Caspases: Killer proteases. Trends Biochem. Sci. 1997; 22:299-306; PMID:9270303; http://dx.doi.org/10.1016/S0968-0004(97)01085-2
  • Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281:1312-16; PMID:9721091; http://dx.doi.org/10.1126/science.281.5381.1312
  • Pinti M, Biswas P, Troiano L, Nasi M, Ferraresi R, Mussini C, Vecchiet J, Esposito R, Paganelli R, Cossarizza A. Different sensitivity to apoptosis in cells of monocytic or lymphocytic origin chronically infected with human immunodeficiency virus type-1. Experimental Biology and Medicine. 2003; 228:1346-54; PMID:14681550
  • Lum JJ, Badley AD. Resistance to apoptosis. Mechanism for the development of HIV reservoirs. Curr. HIV Res. 2003; 1:261-74; PMID:15046251; http://dx.doi.org/10.2174/1570162033485203
  • Kumar A, Abbas W, Herbein G. HIV-1 latency in monocytes/macrophages. Viruses. 2014; 6:1837-60; PMID:24759213; http://dx.doi.org/10.3390/v6041837
  • Badley AD, McElhinny JA, Leibson PJ, Lynch DH, Alderson MR, Paya CV. Up-regulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes. J. Virol. 1996; 70:199-206; PMID:8523526
  • Kiener PA, Davis PM, Starling GC, Mehlin C, Klebanoff SJ, Ledbetter JA, Liles WC. (1997) Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages. J. Exp. Med. 1997; 185:1511-16; PMID:9126933; http://dx.doi.org/10.1084/jem.185.8.1511
  • Guillemard E, Jacquemot C, Aillet F, Schmitt N, Barré-Sinoussi F, Israël N. (2004) Human immunodeficiency virus 1 favors the persistence of infection by activating macrophages through TNF. Virology 2004; 329:371-80; PMID:15518816; http://dx.doi.org/10.1016/j.virol.2004.08.030
  • Zhang M, Li X, Pang X, Ding L, Wood O, Clouse KA, Hewlett I, Dayton AI. Bcl-2 upregulation by HIV-1 Tat during infection of primary human macrophages in culture. J. Biomed. Sci. 2002; 9:133-39; PMID:11914580; http://dx.doi.org/10.1007/BF02256024
  • Olivetta E, Federico M. HIV-1 Nef protects human monocyte-derived macrophages from HIV1-induced apoptosis. Exp. Cell Res. 2006; 312:890-900; PMID:16445909; http://dx.doi.org/10.1016/j.yexcr.2005.12.003
  • Abbas W, Khan KA, Kumar A, Tripathy MK, Dichamp I, Keita M, Mahlknecht U, Rohr O, Herbein G. Blockade of BFA-mediated apoptosis in macrophages by the HIV-1 Nef protein. Cell Death Dis. 2014; 5:e1080; PMID:24556695; http://dx.doi.org/10.1038/cddis.2014.16
  • Lucas A, Kim Y, Rivera-Pabon O, Chae S, Kim DH, Kim B. Targeting the PI3K/Akt cell survival pathway to induce cell death of HIV-1 infected macrophages with alkylphospholipid compounds. PLoS One. 2010; 5:e13121; PMID:20927348; http://dx.doi.org/10.1371/journal.pone.0013121
  • Tanaka Y, Kameoka M, Ota K, Itaya A, Ikuta K, Yoshihara K. Establishment of persistent infection with HIV-1 abrogates the caspase-3-dependent apoptotic signaling pathway in U937 cells. Experimental cell research. 1999; 247:514-24; PMID:10066379; http://dx.doi.org/10.1006/excr.1998.4376
  • King A, Gottlieb E. Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr Opin Cell Biol. 2009; 21:885-93; PMID:19850457; http://dx.doi.org/10.1016/j.ceb.2009.09.009
  • Hollenbaugh JA, Munger J, Kim B. Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology. 2011; 415:153-59; PMID:21565377; http://dx.doi.org/10.1016/j.virol.2011.04.007
  • Linden M, Gellerfors P, Nelson BD. Pore protein and the hexokinase-binding protein from the outer membrane of rat liver mitochondria are identical. FEBS Lett. 1982; 141:189-92; PMID:6178620; http://dx.doi.org/10.1016/0014-5793(82)80044-6
  • Vyssokikh, MY, Brdiczka D. The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim. Pol 2003; 50:389-404; PMID:12833165
  • Pennington KN, Taylor JA, Bren GD, Paya CV. IkappaB kinase dependent chronic activation of NF-kappaB is necessary for p21(WAF1/Cip1) inhibition of differentiation-induced apoptosis of monocytes. Mol Cell Biol. 2001; 21:1930-41; PMID:11238929; http://dx.doi.org/10.1128/MCB.21.6.1930-1941.2001
  • Pastorino JG, Hoek JB. Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr. 2008; 40:171-82; PMID:18683036; http://dx.doi.org/10.1007/s10863-008-9148-8
  • John S, Weiss JN, Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One 2011; 6:e17674; PMID:21408025; http://dx.doi.org/10.1371/journal.pone.0017674
  • Cheng-Mayer C, Levy JA. Distinct biological and serological properties of human.immunodeficiency viruses from the brain. Ann Neurol. 1988; 23:S58-S61; PMID:3258140.
  • Ahmad A, Ahmad S, Schneider BK, Allen CB, Chang LY, White CW. Elevated expression of hexokinase II protects human lung epithelial-like A549 cells against oxidative injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283:L573-84; PMID:12169577
  • Shroff EH, Snyder CM, Budinger GR, Jain M, Chew TL, Khuon S, Perlman H, Chandel NS. BH3 peptides induce mitochondrial fission and cell death independent of BAX/BAK. PLoS One. 2009; 4:e5646; PMID:19468307; http://dx.doi.org/10.1371/journal.pone.0005646

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.