1,656
Views
17
CrossRef citations to date
0
Altmetric
Extra View

A role of WT1 in cell division and genomic stability

&
Pages 1358-1364 | Received 20 Jan 2015, Accepted 15 Feb 2015, Published online: 30 Apr 2015

References

  • Hohenstein P, Hastie ND. The many facets of the Wilms' tumour gene, WT1. Hum Mol Genet 2006; 15 Spec No 2:R196-201; PMID:16987884; http://dx.doi.org/10.1093/hmg/ddl196
  • Discenza MT, Pelletier J. Insights into the physiological role of WT1 from studies of genetically modified mice. Physiol Genomics 2004; 16:287-300; PMID:14966251; http://dx.doi.org/10.1152/physiolgenomics.00164.2003
  • Kreidberg JA. WT1 and kidney progenitor cells. Organogenesis 2010; 6:61-70; PMID:20885852; http://dx.doi.org/10.4161/org.6.2.11928
  • Roberts SG. Transcriptional regulation by WT1 in development. Curr Opin Genet Dev 2005; 15:542-7; PMID:16099645; http://dx.doi.org/10.1016/j.gde.2005.08.004
  • Rudat C, Kispert A. Wt1 and epicardial fate mapping. Circ Res 2012; 111:165-9; PMID:22693350; http://dx.doi.org/10.1161/CIRCRESAHA.112.273946
  • Ozdemir DD, Hohenstein P. Wt1 in the kidney–a tale in mouse models. Pediatr Nephrol 2014; 29:687-93; PMID:24240471; http://dx.doi.org/10.1007/s00467-013-2673-7
  • Scholz H, Kirschner KM. A role for the Wilms' tumor protein WT1 in organ development. Physiology 2005; 20:54-9; PMID:15653840; http://dx.doi.org/10.1152/physiol.00048.2004
  • Gao Y, Toska E, Denmon D, Roberts SG, Medler KF. WT1 regulates the development of the posterior taste field. Development 2014; 141:2271-8; PMID:24803588; http://dx.doi.org/10.1242/dev.105676
  • Wang XN, Li ZS, Ren Y, Jiang T, Wang YQ, Chen M, Zhang J, Hao JX, Wang YB, Sha RN, et al. The Wilms tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of sertoli cell polarity and is associated with non-obstructive azoospermia in humans. PLoS Genet 2013; 9:e1003645; PMID:23935527; http://dx.doi.org/10.1371/journal.pgen.1003645
  • Wagner N, Wagner KD, Hammes A, Kirschner KM, Vidal VP, Schedl A, Scholz H. A splice variant of the Wilms' tumour suppressor Wt1 is required for normal development of the olfactory system. Development 2005; 132:1327-36; PMID:15716344; http://dx.doi.org/10.1242/dev.01682
  • Morrison AA, Viney RL, Ladomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophy Acta 2008; 1785:55-62; PMID:17980713
  • Hartkamp J, Roberts SG. The role of the Wilms' tumour-suppressor protein WT1 in apoptosis. Biochem Soc Trans 2008; 36:629-31; PMID:18631130; http://dx.doi.org/10.1042/BST0360629
  • Shandilya J, Toska E, Richard DJ, Medler KF, Roberts SG. WT1 interacts with MAD2 and regulates mitotic checkpoint function. Nat Commun 2014; 5:4903; PMID:25232865; http://dx.doi.org/10.1038/ncomms5903
  • Chau YY, Hastie ND. The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis. Trends Genet 2012; 28:515-24; PMID:22658804; http://dx.doi.org/10.1016/j.tig.2012.04.004
  • Huff V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer 2011; 11:111-21; PMID:21248786; http://dx.doi.org/10.1038/nrc3002
  • Yang L, Han Y, Suarez Saiz F, Minden MD. A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21:868-76; PMID:17361230
  • Owen C, Fitzgibbon J, Paschka P. The clinical relevance of Wilms Tumour 1 (WT1) gene mutations in acute leukaemia. Hematol Oncol 2010; 28:13-9; PMID:20013787
  • Sugiyama H. WT1 (Wilms' tumor gene 1): biology and cancer immunotherapy. Japan J Clin Oncol 2010; 40:377-87; PMID:20395243; http://dx.doi.org/10.1093/jjco/hyp194
  • Lara-Gonzalez P, Westhorpe FG, Taylor SS. The spindle assembly checkpoint. Curr Biol 2012; 22:R966-80; PMID:23174302; http://dx.doi.org/10.1016/j.cub.2012.10.006
  • Fava LL, Kaulich M, Nigg EA, Santamaria A. Probing the in vivo function of Mad1:C-Mad2 in the spindle assembly checkpoint. EMBO J 2011; 30:3322-36; PMID:21772247; http://dx.doi.org/10.1038/emboj.2011.239
  • Han JS, Holland AJ, Fachinetti D, Kulukian A, Cetin B, Cleveland DW. Catalytic assembly of the mitotic checkpoint inhibitor BubR1-Cdc20 by a Mad2-induced functional switch in Cdc20. Mol Cell 2013; 51:92-104; PMID:23791783; http://dx.doi.org/10.1016/j.molcel.2013.05.019
  • Luo X, Yu H. Protein metamorphosis: the two-state behavior of Mad2. Structure 2008; 16:1616-25; PMID:19000814; http://dx.doi.org/10.1016/j.str.2008.10.002
  • Mapelli M, Massimiliano L, Santaguida S, Musacchio A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 2007; 131:730-43; PMID:18022367; http://dx.doi.org/10.1016/j.cell.2007.08.049
  • Schuyler SC, Wu YF, Kuan VJ. The Mad1-Mad2 balancing act–a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci 2012; 125:4197-206; PMID:23093575; http://dx.doi.org/10.1242/jcs.107037
  • Skinner JJ, Wood S, Shorter J, Englander SW, Black BE. The Mad2 partial unfolding model: regulating mitosis through Mad2 conformational switching. J Cell Biol 2008; 183:761-8; PMID:19029339; http://dx.doi.org/10.1083/jcb.200808122
  • Varetti G, Guida C, Santaguida S, Chiroli E, Musacchio A. Homeostatic control of mitotic arrest. Mol Cell 2011; 44:710-20; PMID:22152475; http://dx.doi.org/10.1016/j.molcel.2011.11.014
  • Westhorpe FG, Tighe A, Lara-Gonzalez P, Taylor SS. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 2011; 124:3905-16; PMID:22100920; http://dx.doi.org/10.1242/jcs.093286
  • Yang M, Li B, Tomchick DR, Machius M, Rizo J, Yu H, Luo X. p31comet blocks Mad2 activation through structural mimicry. Cell 2007; 131:744-55; PMID:18022368; http://dx.doi.org/10.1016/j.cell.2007.08.048
  • Yun M, Han YH, Yoon SH, Kim HY, Kim BY, Ju YJ, Kang CM, Jang SH, Chung HY, Lee SJ, et al. p31comet Induces cellular senescence through p21 accumulation and Mad2 disruption. Mol Cancer Res 2009; 7:371-82; PMID:19276188; http://dx.doi.org/10.1158/1541-7786.MCR-08-0056
  • Bakhoum SF, Compton DA. Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 2012; 122:1138-43; PMID:22466654; http://dx.doi.org/10.1172/JCI59954
  • Burds AA, Lutum AS, Sorger PK. Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci U S A 2005; 102:11296-301; PMID:16055552; http://dx.doi.org/10.1073/pnas.0505053102
  • Holland AJ, Cleveland DW. Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 2012; 13:501-14; PMID:22565320; http://dx.doi.org/10.1038/embor.2012.55
  • Rao CV, Yamada HY, Yao Y, Dai W. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 2009; 30:1469-74; PMID:19372138; http://dx.doi.org/10.1093/carcin/bgp081
  • Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 2014; 15:80-9; PMID:24387333; http://dx.doi.org/10.2174/1389450114666140106101412
  • Britigan EM, Wan J, Zasadil LM, Ryan SD, Weaver BA. The ARF tumor suppressor prevents chromosomal instability and ensures mitotic checkpoint fidelity through regulation of Aurora B. Mol Biol Cell 2014; 25:2761-73; PMID:25057018; http://dx.doi.org/10.1091/mbc.E14-05-0966
  • Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol 2013; 14:297-306; PMID:23594950; http://dx.doi.org/10.1038/nrm3567
  • Malumbres M. Oncogene-induced mitotic stress: p53 and pRb get mad too. Cancer Cell 2011; 19:691-2; PMID:21665141; http://dx.doi.org/10.1016/j.ccr.2011.05.023
  • van Deursen JM. Rb loss causes cancer by driving mitosis mad. Cancer Cell 2007; 11:1-3; PMID:17222786; http://dx.doi.org/10.1016/j.ccr.2006.12.006
  • Giacinti C, Giordano A. RB and cell cycle progression. Oncogene 2006; 25:5220-7; PMID:16936740; http://dx.doi.org/10.1038/sj.onc.1209615
  • Deng CX. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucl Acids Res 2006; 34:1416-26; PMID:16522651; http://dx.doi.org/10.1093/nar/gkl010
  • Werner H, Sarfstein R. Transcriptional and epigenetic control of IGF1R gene expression: implications in metabolism and cancer. Growth Horm IGF Res 2014; 24:112-8; http://dx.doi.org/10.1016/j.ghir.2014.03.006
  • Chi YH, Ward JM, Cheng LI, Yasunaga J, Jeang KT. Spindle assembly checkpoint and p53 deficiencies cooperate for tumorigenesis in mice. Int J Cancer 2009; 124:1483-9; PMID:19065665; http://dx.doi.org/10.1002/ijc.24094
  • Schvartzman JM, Duijf PH, Sotillo R, Coker C, Benezra R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 2011; 19:701-14; PMID:21665145; http://dx.doi.org/10.1016/j.ccr.2011.04.017
  • Al-Hussain T, Ali A, Akhtar M. Wilms tumor: an update. Adv Anatomic Pathol 2014; 21:166-73; PMID:24713986; http://dx.doi.org/10.1097/PAP.0000000000000017
  • Toska E, Roberts SG. Mechanisms of transcriptional regulation by WT1 (Wilms' tumour 1). Biochem J 2014; 461:15-32; PMID:24927120
  • Johnson D, Hastwell PW, Walmsley RM. The involvement of WT1 in the regulation of GADD45a in response to genotoxic stress. Mutagenesis 2013; 28:393-9; PMID:23476008; http://dx.doi.org/10.1093/mutage/get015
  • Busch M, Schwindt H, Brandt A, Beier M, Gorldt N, Romaniuk P, Toska E, Roberts S, Royer HD, Royer-Pokora B. Classification of a frameshift/extended and a stop mutation in WT1 as gain-of-function mutations that activate cell cycle genes and promote Wilms tumour cell proliferation. Hum Mol Genet 2014; 23:3958-74; PMID:24619359; http://dx.doi.org/10.1093/hmg/ddu111
  • Toska E, Campbell HA, Shandilya J, Goodfellow SJ, Shore P, Medler KF, Roberts SG. Repression of transcription by WT1-BASP1 requires the myristoylation of BASP1 and the PIP2-dependent recruitment of histone deacetylase. Cell Rep 2012; 2:462-9; PMID:22939983; http://dx.doi.org/10.1016/j.celrep.2012.08.005
  • Toska E, Shandilya J, Goodfellow SJ, Medler KF, Roberts SG. Prohibitin is required for transcriptional repression by the WT1-BASP1 complex. Oncogene 2014; 33:5100-8; PMID:24166496; http://dx.doi.org/10.1038/onc.2013.447
  • Hartkamp J, Carpenter B, Roberts SG. The Wilms' tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 2010; 37:159-71; PMID:20122399; http://dx.doi.org/10.1016/j.molcel.2009.12.023
  • Hartkamp J, Roberts SG. HtrA2, taming the oncogenic activities of WT1. Cell Cycle 2010; 9:2508-14; PMID:20543571; http://dx.doi.org/10.4161/cc.9.13.12060
  • Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kondo S, Kaji M. Overexpression of MAD2 predicts clinical outcome in primary lung cancer patients. Lung Cancer 2011; 74:124-31; PMID:21376419; http://dx.doi.org/10.1016/j.lungcan.2011.01.025
  • McGrogan BT, Gilmartin B, Carney DN, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 2008; 1785:96-132; PMID:18068131
  • Sotillo R, Schvartzman JM, Socci ND, Benezra R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 2010; 464:436-40; PMID:20173739; http://dx.doi.org/10.1038/nature08803
  • Yu L, Liu S, Guo W, Zhang B, Liang Y, Feng Q. Upregulation of Mad2 facilitates in vivo and in vitro osteosarcoma progression. Oncol Rep 2012; 28:2170-6; PMID:22992948
  • Wang X, Jin DY, Wong HL, Feng H, Wong YC, Tsao SW. MAD2-induced sensitization to vincristine is associated with mitotic arrest and Raf/Bcl-2 phosphorylation in nasopharyngeal carcinoma cells. Oncogene 2003; 22:109-16; PMID:12527913; http://dx.doi.org/10.1038/sj.onc.1206069
  • Smolen GA, Vassileva MT, Wells J, Matunis MJ, Haber DA. SUMO-1 modification of the Wilms' tumor suppressor WT1. Cancer Res 2004; 64:7846-51; PMID:15520190; http://dx.doi.org/10.1158/0008-5472.CAN-04-1502
  • Ye Y, Raychaudhuri B, Gurney A, Campbell CE, Williams BR. Regulation of WT1 by phosphorylation: inhibition of DNA binding, alteration of transcriptional activity and cellular translocation. EMBO J 1996; 15:5606-15; PMID:8896454
  • Green LM, Wagner KJ, Campbell HA, Addison K, Roberts SG. Dynamic interaction between WT1 and BASP1 in transcriptional regulation during differentiation. Nucleic Acids Res 2009; 37:431-40; PMID:19050011; http://dx.doi.org/10.1093/nar/gkn955
  • Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58; PMID:23512483; http://dx.doi.org/10.1007/s00412-013-0401-5
  • Yamasaki T, Takahashi A, Pan J, Yamaguchi N, Yokoyama KK. Phosphorylation of Activation Transcription Factor-2 at Serine 121 by Protein Kinase C Controls c-Jun-mediated Activation of Transcription. J Biol Chem 2009; 284:8567-81; PMID:19176525; http://dx.doi.org/10.1074/jbc.M808719200
  • Mochly-Rosen D, Das K, Grimes KV. Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 2012; 11:937-57; PMID:23197040; http://dx.doi.org/10.1038/nrd3871
  • Toton E, Ignatowicz E, Skrzeczkowska K, Rybczynska M. Protein kinase Cepsilon as a cancer marker and target for anticancer therapy. Pharmacol Rep 2011; 63:19-29; PMID:21441608; http://dx.doi.org/10.1016/S1734-1140(11)70395-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.