2,083
Views
20
CrossRef citations to date
0
Altmetric
Report

Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan

, &
Pages 1698-1703 | Received 08 Dec 2014, Accepted 10 Mar 2015, Published online: 02 Jun 2015

References

  • Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Rad Biol Med 2010; 48:749–62; PMID:20045723; http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.022
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, Oxidants, and Aging. Cell 2005; 120:483–95; PMID:15734681; http://dx.doi.org/10.1016/j.cell.2005.02.001
  • Bratic A, Larsson N-G. The role of mitochondria in aging. J Clin Invest 2013; 123:951–7; PMID:23454757; http://dx.doi.org/10.1172/JCI64125
  • Beach A, Titorenko VI. Essential roles of peroxisomally produced and metabolized biomolecules in regulating yeast longevity. Subcell Biochem 2013; 69:153–67; PMID:23821148; http://dx.doi.org/10.1007/978-94-007-6889-5_9
  • Fransen M, Nordgren M, Wang B, Apanasets O, Van Veldhoven PP. Aging, age-related diseases and peroxisomes. Subcell Biochem 2013; 69:45–65; PMID:23821142; http://dx.doi.org/10.1007/978-94-007-6889-5_3
  • Kumar S, Kawałek A, van der Klei IJ. Peroxisomal quality control mechanisms. Curr Opin Microbiol 2014; 22:30–7; PMID:25305535; http://dx.doi.org/10.1016/j.mib.2014.09.009
  • Manivannan S, Scheckhuber CQ, Veenhuis M, van der Klei IJ. The impact of peroxisomes on cellular aging and death. Front Oncol 2012; 2(5); PMID:22662318; http://dx.doi.org/10.3389/fonc.2012.00050
  • Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz HD. Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 2007; 9:99–105; PMID:17173038; http://dx.doi.org/10.1038/ncb1524
  • Palermo V, Falcone C, Mazzoni C. Apoptosis and aging in mitochondrial morphology mutants of S. cerevisiae. Folia Microbiol (Praha) 2007; 52:479–83; PMID:18298044; http://dx.doi.org/10.1007/BF02932107
  • Kuravi K, Nagotu S, Krikken AM, Sjollema K, Deckers M, Erdmann R, Veenhuis M, van der Klei IJ. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisae. J Cell Sci 2006; 119:3994–4001; PMID:16968746; http://dx.doi.org/10.1242/jcs.03166
  • Motley AM, Ward GP, Hettema EH. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J Cell Sci 2008; 121:1633–40; PMID:18445678; http://dx.doi.org/10.1242/jcs.026344
  • Hughes AL, Gottschling DE. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 2012; 492:261–5; PMID:23172144; http://dx.doi.org/10.1038/nature11654
  • Cheng WC, Teng X, Park HK, Tucker CM, Dunham MJ, Hardwick JM. Fis1 deficiency selects for compensatory mutations responsible for cell death and growth control defects. Cell Death Differ 2008; 15:1838–46; PMID:18756280; http://dx.doi.org/10.1038/cdd.2008.117
  • Halbach A, Landgraf C, Lorenzen S, Rosenkranz K, Volkmer-Engert R, Erdmann R, Rottensteiner H. Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J Cell Sci 2006; 119:2508–17; PMID:16763195; http://dx.doi.org/10.1242/jcs.02979
  • Lefevre SD, van Roermund CW, Wanders RJA, Veenhuis M, van der Klei IJ. The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell 2013; 12:784–93; PMID:23755917; http://dx.doi.org/10.1111/acel.12113
  • Mao K, Liu X, Feng Y, Klionsky DJ. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 2014; 10:652–61; PMID:24451165; http://dx.doi.org/10.4161/auto.27852
  • Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 2007; 14:1647–56; PMID:17541427; http://dx.doi.org/10.1038/sj.cdd.4402167
  • Manivannan S, de Boer R, Veenhuis M, van der Klei IJ. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy 2013; 9:1044–56; PMID:23614977; http://dx.doi.org/10.4161/auto.24543
  • Jungwirth H, Ring J, Mayer T, Schauer A, Buttner S, Eisenberg T, Carmona-Gutierrez D, Kuchler K, Madeo F. Loss of peroxisome function triggers necrosis. FEBS letters 2008; 582:2882–6; PMID:18656474; http://dx.doi.org/10.1016/j.febslet.2008.07.023
  • Bener Aksam E, Jungwirth H, Kohlwein SD, Ring J, Madeo F, Veenhuis M, van der Klei IJ. Absence of the peroxiredoxin Pmp20 causes peroxisomal protein leakage and necrotic cell death. Free Rad Biol Med 2008; 45:1115–24; PMID:18694816; http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.010
  • Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, Geng J, Mao K, Yang Z, Yen W-L, et al. A Genomic Screen for Yeast Mutants Defective in Selective Mitochondria Autophagy. Mol Biol Cell 2009; 20:4730–8; PMID:19793921; http://dx.doi.org/10.1091/mbc.E09-03-0225
  • Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou J-C. Preventing Mitochondrial Fission Impairs Mitochondrial Function and Leads to Loss of Mitochondrial DNA. PLoS ONE 2008; 3:e3257-8; PMID:18806874; http://dx.doi.org/10.1371/journal.pone.0003257
  • Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC. Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 2005; 12:1613–21; PMID:15947785; http://dx.doi.org/10.1038/sj.cdd.4401697
  • Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008; 27:433–46; PMID:18200046; http://dx.doi.org/10.1038/sj.emboj.7601963
  • Mendl N, Occhipinti A, Müller M, Wild P, Dikic I, Reichert AS. Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J Cell Sci 2011; 124:1339–50; PMID:21429936; http://dx.doi.org/10.1242/jcs.076406
  • Dijken LPV, Otto R, Harder W. Growth of Hansenula polymorpha in a methanol-limited chemostat. Arch Microbiol 1976; 111:137–44; PMID:1015956; http://dx.doi.org/10.1007/BF00446560
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol 1983; 153:163–8; PMID:6336730
  • Goldstein AL, McCusker JH. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 1999; 15:1541–53; PMID:10514571; http://dx.doi.org/10.1002/(SICI)1097-0061(199910)15:14%3c1541::AID-YEA476%3e3.0.CO;2-K
  • Hill J, Donald KA, Griffiths DE, Donald G. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 1991; 19:5791; PMID:1945859; http://dx.doi.org/10.1093/nar/19.23.6688
  • Westermann B, Neupert W. Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 2000; 16:1421–7; PMID:11054823; http://dx.doi.org/10.1002/1097-0061(200011)16:15%3c1421::AID-YEA624%3e3.0.CO;2-U
  • Gietz D, Jean A St, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 1992; 20:1425; PMID:1561104; http://dx.doi.org/10.1093/nar/20.6.1425