1,454
Views
37
CrossRef citations to date
0
Altmetric
Report

Let-7a regulates mammosphere formation capacity through Ras/NF-κB and Ras/MAPK/ERK pathway in breast cancer stem cells

, , , , , , , , , , , & show all
Pages 1686-1697 | Received 08 Dec 2014, Accepted 12 Mar 2015, Published online: 02 Jun 2015

References

  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414:105–11; PMID:11689955; http://dx.doi.org/10.1038/35102167
  • Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS. Cancer stem cells in breast: current opinion and future challenges. Pathobiology 2008; 75:75–84; PMID:18544962; http://dx.doi.org/10.1159/000123845
  • Ricardo S, Vieira AF, Gerhard R, Leitao D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F, Paredes J. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 2011; 64:937–46; PMID:21680574; http://dx.doi.org/10.1136/jcp.2011.090456
  • Velasco-Velazquez MA, Popov VM, Lisanti MP, Pestell RG. The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol 2011; 179:2–11; PMID:21640330; http://dx.doi.org/10.1016/j.ajpath.2011.03.005
  • Chuthapisith S, Eremin J, El-Sheemey M, Eremin O. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surgical Oncol 2010; 19:27–32; PMID:19251410; http://dx.doi.org/10.1016/j.suronc.2009.01.004
  • Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44(+) breast cancer-initiating cells to radiation. J Natl Cancer I 2006; 98:1777–85; PMID:17179479
  • Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012; 2012:708036; PMID:22693526; http://dx.doi.org/10.1155/2012/708036
  • Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66:9339–44; PMID:16990346; http://dx.doi.org/10.1158/0008-5472.CAN-06-3126
  • Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M. Cancer stem cell markers in common cancers - therapeutic implications. Trend Mol Med 2008; 14:450–60; PMID:18775674; http://dx.doi.org/10.1016/j.molmed.2008.08.003
  • Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M. Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest J Tech Method Pathol 2009; 89:857–66; PMID:19488035; http://dx.doi.org/10.1038/labinvest.2009.54
  • Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, Eriksson M, Porten M, Herrmann I, Ristimaki A, Virkkunen P, Tarkkanen M, et al. Tissue-specific promoters active in CD44+CD24−/low breast cancer cells. Cancer Res 2008; 68:5533–9; PMID:18632604; http://dx.doi.org/10.1158/0008-5472.CAN-07-5288
  • Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 2005; 11:1154–9; PMID:15709183
  • Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004; 101:14228–33; PMID:15381773; http://dx.doi.org/10.1073/pnas.0400067101
  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1:555–67; PMID:18371393; http://dx.doi.org/10.1016/j.stem.2007.08.014
  • Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140:62–73; PMID:20074520; http://dx.doi.org/10.1016/j.cell.2009.12.007
  • Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147:759–72; PMID:22078877; http://dx.doi.org/10.1016/j.cell.2011.09.048
  • Wang X, Cao LEI, Wang Y, Wang X, Liu N, You Y. Regulation of let-7 and its target oncogenes (Review). 2012; 955–60; PMID:22783372
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136:215–33; PMID:19167326; http://dx.doi.org/10.1016/j.cell.2009.01.002
  • Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315:1576–9; PMID:17322030; http://dx.doi.org/10.1126/science.1137999
  • Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. Gene Dev 2009; 23:1743–8; PMID:19574298; http://dx.doi.org/10.1101/gad.1812509
  • Zhao Y, Deng C, Lu W, Xiao J, Ma D, Guo M, Recker RR, Gatalica Z, Wang Z, Xiao GG. let-7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor α signaling in breast cancer. Mol Med 2011; 17:1233–41; PMID:21826373; http://dx.doi.org/10.2119/molmed.2010.00225
  • Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih Ie M, Zhang Y, Wood W 3rd, Becker KG, Morin PJ. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PloS one 2008; 3:e2436; PMID:18560586; http://dx.doi.org/10.1371/journal.pone.0002436
  • Yu Z, Li Y, Fan H, Liu Z, Pestell RG. miRNAs regulate stem cell self-renewal and differentiation. Frontier Genet 2012; 3:191; PMID:23056008; http://dx.doi.org/10.3389/fgene.2012.00191
  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131:1109–23; PMID:18083101; http://dx.doi.org/10.1016/j.cell.2007.10.054
  • Zamkova M, Khromova N, Kopnin BP, Kopnin P. Ras-induced ROS upregulation affecting cell proliferation is connected with cell type-specific alterations of HSF1/SESN3/p21Cip1/WAF1 pathways. Cell Cycle 2013; 12:826–36; PMID:23388456; http://dx.doi.org/10.4161/cc.23723
  • Takahashi C, Bronson RT, Socolovsky M, Contreras B, Lee KY, Jacks T, Noda M, Kucherlapati R, Ewen ME. Rb and N-ras function together to control differentiation in the mouse. Mol Cell Biol 2003; 23:5256–68; PMID:12861012; http://dx.doi.org/10.1128/MCB.23.15.5256-5268.2003
  • Basu Roy UK, Henkhaus RS, Loupakis F, Cremolini C, Gerner EW, Ignatenko NA. Caveolin-1 is a novel regulator of K-RAS-dependent migration in colon carcinogenesis. Intl J Cancer 2013; 133:43–57; PMID:23280667; http://dx.doi.org/10.1002/ijc.28001
  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell 2005; 120:635–47; PMID:15766527; http://dx.doi.org/10.1016/j.cell.2005.01.014
  • Chen Y, Wu J, Ghosh G. KappaB-Ras binds to the unique insert within the ankyrin repeat domain of IkappaBbeta and regulates cytoplasmic retention of IkappaBbeta × NF-kappaB complexes. J Biol Chem 2003; 278:23101–6; PMID:12672800; http://dx.doi.org/10.1074/jbc.M301021200
  • Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139:693–706; PMID:19878981; http://dx.doi.org/10.1016/j.cell.2009.10.014
  • Hinohara K, Kobayashi S, Kanauchi H, Shimizu S, Nishioka K, Tsuji E, Tada K, Umezawa K, Mori M, Ogawa T, et al. ErbB receptor tyrosine kinase/NF-kappaB signaling controls mammosphere formation in human breast cancer. Proc Natl Acad Sci U S A 2012; 109:6584–9; PMID:22492965; http://dx.doi.org/10.1073/pnas.1113271109
  • Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26:3291–310; PMID:17496923; http://dx.doi.org/10.1038/sj.onc.1210422
  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica Biophys Acta 2007; 1773:1263–84; PMID:17126425; http://dx.doi.org/10.1016/j.bbamcr.2006.10.001
  • Choudhury SN, Li Y. miR-21 and let-7 in the Ras and NF-κB Pathways. MicroRNA 2012; 1:65–9; PMID:25048092; http://dx.doi.org/10.2174/2211536611201010065
  • Bonini SA, Ferrari-Toninelli G, Uberti D, Montinaro M, Buizza L, Lanni C, Grilli M, Memo M. Nuclear factor kappaB-dependent neurite remodeling is mediated by Notch pathway. J Neuroscience 2011; 31:11697–705; PMID:21832199; http://dx.doi.org/10.1523/JNEUROSCI.1113-11.2011
  • Bravo SB, Pampin S, Cameselle-Teijeiro J, Carneiro C, Dominguez F, Barreiro F, Alvarez CV. TGF-β-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation. Oncogene 2003; 22:7819–30; PMID:14586408; http://dx.doi.org/10.1038/sj.onc.1207029
  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Gene Dev 2003; 17:1253–70; PMID:12756227; http://dx.doi.org/10.1101/gad.1061803
  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138:645–59; PMID:19682730; http://dx.doi.org/10.1016/j.cell.2009.06.034
  • Morrison BJ, Schmidt CW, Lakhani SR, Reynolds BA, Lopez JA. Breast cancer stem cells: implications for therapy of breast cancer. Breast Cancer Res 2008; 10:210; PMID:18671830; http://dx.doi.org/10.1186/bcr2111
  • Ding XC, Slack FJ, Großhans H. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell cycle (Georgetown, Tex) 2008; 7:3083–90.
  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435:834–8; PMID:15944708; http://dx.doi.org/10.1038/nature03702
  • Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nature reviews Genetics 2009; 10:704–14; PMID:19763153; http://dx.doi.org/10.1038/nrg2634
  • Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochimica Biophy Acta 2007; 1773:1285–98; PMID:17196680; http://dx.doi.org/10.1016/j.bbamcr.2006.11.011
  • Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004; 68:320–44; PMID:15187187; http://dx.doi.org/10.1128/MMBR.68.2.320-344.2004
  • Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 2011; 3:192–222; PMID:21422497
  • Deschenes-Simard X, Gaumont-Leclerc MF, Bourdeau V, Lessard F, Moiseeva O, Forest V, Igelmann S, Mallette FA, Saba-El-Leil MK, Meloche S, et al. Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Gene Dev 2013; 27:900–15; PMID:23599344; http://dx.doi.org/10.1101/gad.203984.112
  • Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opinion Therapeutic Targets 2012; 16:103–19; PMID:22239440; http://dx.doi.org/10.1517/14728222.2011.645805
  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64:3753–6; PMID:15172979; http://dx.doi.org/10.1158/0008-5472.CAN-04-0637
  • Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, Settleman J. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 2009; 15:489–500; PMID:19477428; http://dx.doi.org/10.1016/j.ccr.2009.03.022
  • Kwon O, Jeong SJ, Kim SO, He L, Lee HG, Jang KL, Osada H, Jung M, Kim BY, Ahn JS. Modulation of E-cadherin expression by K-Ras; involvement of DNA methyltransferase-3b. Carcinogenesis 2010; 31:1194–201; PMID:20375073
  • Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS, KRAS, and HRAS exhibit different leukemogenic potentials in mice. Cancer Res 2007; 67:7139–46; PMID:17671181; http://dx.doi.org/10.1158/0008-5472.CAN-07-0778
  • Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L, Guo N. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene 2013; 32:5272–82; PMID:23318420; http://dx.doi.org/10.1038/onc.2012.573
  • Wang XR, Luo H, Li HL, Cao L, Wang XF, Yan W, Wang YY, Zhang JX, Jiang T, Kang CS, et al. Overexpressed let-7a inhibits glioma cell malignancy by directly targeting K-ras, independently of PTEN. Neuro-Oncol 2013; 15:1491–501; PMID:24092860; http://dx.doi.org/10.1093/neuonc/not107
  • Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li C, Lin J. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res 2011; 71:7226–37; PMID:21900397; http://dx.doi.org/10.1158/0008-5472.CAN-10-4660
  • Wang T, Liu Z, Guo S, Wu L, Li M, Yang J, Chen R, Xu H, Cai S, Chen H, et al. The tumor suppressive role of CAMK2N1 in castration-resistant prostate cancer. Oncotarget 2014; 5:3611–21; PMID:25003983
  • Wang T, Guo SM, Liu Z, Wu LC, Li MC, Yang J, Chen RB, Liu XM, Xu H, Cai SX, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget 2014; 5:10293–306; PMID:25296973
  • Martin HL, Smith L, Tomlinson DC. Multidrug-resistant breast cancer: current perspectives. Breast Cancer 2014; 6:1–13; PMID:24648765; http://dx.doi.org/10.2147/BCTT.S37638

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.