2,922
Views
20
CrossRef citations to date
0
Altmetric
Report

A role for the thermal environment in defining co-stimulation requirements for CD4+ T cell activation

, , , , , , , , & show all
Pages 2340-2354 | Received 27 Feb 2015, Accepted 06 May 2015, Published online: 15 Jul 2015

References

  • Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 1992; 71: 1065-8; PMID:1335362; http://dx.doi.org/10.1016/S0092-8674(05)80055-8
  • June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today 1994; 15: 321-31; PMID:7522010
  • Dustin ML, Cooper JA. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 2000; 1: 23-9; PMID:10881170
  • Riley JL, June CH. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 2005; 105: 13-21; PMID:15353480; http://dx.doi.org/10.1182/blood-2004-04-1596
  • Tavano R, Gri G, Molon B, Marinari B, Rudd CE, Tuosto L, Viola A. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol 2004; 173: 5392-7; PMID:15494485
  • Schwartz RH. T cell anergy. Annu Rev Immunol 2003; 21: 305-34; PMID:12471050
  • LeMay LG, Otterness IG, Vander AJ, Kluger MJ. In vivo evidence that the rise in plasma IL 6 following injection of a fever-inducing dose of LPS is mediated by IL 1 beta. Cytokine 1990; 2: 199-204; PMID:2104223; http://dx.doi.org/10.1016/1043-4666(90)90016-M
  • Refinetti R, Menaker M. The circadian rhythm of body temperature. Physiol Behav 1992; 51: 613-37; PMID:1523238
  • Hardy J, Bard P. Chapter 56. In: VB Mountcastle, editors. Medical Physiology, 1992; pp. 1305-42
  • Hanson DF. Fever and the immune response. The effects of physiological temperatures on primary murine splenic T-cell responses in vitro. J Immunol 1993; 151: 436-48; PMID:8326136
  • Guyton AC. Chapter 73. In: Elsevier, editors. Textbook of Medical Physiology, 2006
  • Kluger MJ. Fever. Pediatrics 1980; 66: 720-4; PMID:7432877
  • Plaisance KI, Kudaravalli S, Wasserman SS, Levine MM, Mackowiak PA. Effect of antipyretic therapy on the duration of illness in experimental influenza A, Shigella sonnei, and Rickettsia rickettsii infections. Pharmacotherapy 2000; 20: 1417-22; PMID:11130213
  • Kluger MJ. Fever: role of pyrogens and cryogens. Physiol Rev 1991; 71: 93-127; PMID:1986393
  • Hasday JD, Fairchild KD, Shanholtz C. The role of fever in the infected host. Microbes and infection / Institut Pasteur 2000; 2: 1891-904; PMID:11165933
  • Smith JB, Knowlton RP, Agarwal SS. Human lymphocyte responses are enhanced by culture at 40 degrees C. J Immunol 1978; 121: 691-4; PMID:150449
  • Roberts NJ. Impact of temperature elevation on immunologic defenses. Rev Infect Dis 1991; 13: 462-72; PMID:1866550; http://dx.doi.org/10.1093/clinids/13.3.462
  • Meinander A, Söderström TS, Kaunisto A, Poukkula M, Sistonen L, Eriksson JE. (2007) Fever-like hyperthermia controls T lymphocyte persistence by inducing degradation of cellular FLIPshort. J Immunol 2007; 178: 3944-53; PMID:17339495; http://dx.doi.org/10.4049/jimmunol.178.6.3944
  • Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee CT, Capitano M, Minderman H, Repasky EA. Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J Leukoc Biol 2011; 90: 951-62; PMID:21873456; http://dx.doi.org/10.1189/jlb.0511229
  • Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia 2012; 28: 9-18; PMID:22235780; http://dx.doi.org/10.3109/02656736.2011.616182
  • Kuhry J-G, Duportail G, Bronner C, Laustriat G. Plasma membrane fluidity measurements on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene. Biochim Biophys Acta 1985; 845: 60-7; PMID:3978130; http://dx.doi.org/10.1016/0167-4889(85)90055-2
  • Ferretti G, Offidani AM, Simonetti O, Valentino M, Curatola G, Bossi G. Changes in Membrane Properties of Erythrocytes and Polymorphonuclear Cells in Psoriasis. Biochem Med Metab B 1989; 41: 132-8; http://dx.doi.org/10.1016/0885-4505(89)90018-2
  • Lin J, Miller MJ, Shaw AS. The c-SMAC: Sorting it all out (or in). J Cell Biol 2005; 170: 177-82; PMID:16009722; http://dx.doi.org/10.1083/jcb.200503032
  • Shahinian A, Pfeiffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, Kawai K, Ohashi PS, Thompson CB, Mak TW. Differential Costimulatory Requirements in CD28-Deficient Mice. Science 1993; 261: 609-12; PMID:7688139; http://dx.doi.org/10.1126/science.7688139
  • Abraham RT, Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 2004; 4: 301-8; PMID:15057788; http://dx.doi.org/10.1038/nri1330
  • Murphy KM, Heimberger AB, Loh DY. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 1990; 250: 1720-3; PMID:2125367; http://dx.doi.org/10.1126/science.2125367
  • Vigh L, Los DA, Horvath I, Murata N. The primary signal in the biological perception of temperature: Pd-catalyzaed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 1993; 90: 9090-4; PMID:8415659; http://dx.doi.org/10.1073/pnas.90.19.9090
  • Carratu L, Franceschelli S, Pardini CL, Kobayashi GS, Horvath I, Vigh L, Maresca B. Membrane lipid perturbation modifies the setpoint of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 1996; 93: 3870-5; PMID:8632982; http://dx.doi.org/10.1073/pnas.93.9.3870
  • Ibolya Horváth, Attila Glatz, Viktória Varvasovszki, Zsolt Török, Tibor Páli, Gábor Balogh, Eszter Kovács, Levente Nádasdi, Sándor Benkö, Ferenc Joó, et al. Membrane physical state controls the signaling mecahismof the heat shock response in synechocysistics pcc6803: identification of hsp17 as a fluidity gene. Proc Natl Acad Sci USA 1998; 95: 3513-8; PMID:9520397; http://dx.doi.org/10.1073/pnas.95.7.3513
  • Balogh G, Horvath I, Nagy E, Hoyk Z, Benko S, Bensaude O, Vígh L. The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS Journal 2005; 272: 6077-86; PMID:16302971; http://dx.doi.org/10.1111/j.1742-4658.2005.04999.x
  • Shigapova N, Torok Z, Balogh G, Goloubinoff P, Vigh L, Horváth I. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in escherichia coli. Biochem Biophys Res Commun 2005; 328: 1216-23; PMID:15708006; http://dx.doi.org/10.1016/j.bbrc.2005.01.081
  • Nagy E, Balogi Z, Gombos I, Akerfelt M, Björkbom A, Balogh G, Török Z, Maslyanko A, Fiszer-Kierzkowska A, Lisowska K, et al. Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc Natl Acad Sci USA 2007; 104: 7945-50; PMID:17470815; http://dx.doi.org/10.1073/pnas.0702557104
  • Balogh G, Péter M, Liebisch G, Horváth I, Török Z, Nagy E, Maslyanko A, Benko S, Schmitz G, Harwood JL, et al. Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line. Biochim Biophys Acta 2010; 1801: 1036-47; PMID:20430110; http://dx.doi.org/10.1016/j.bbalip.2010.04.011
  • Calder PC, Yaqoob D, Harvey DJ, Watts A, Newsholme EA. Incorporation of fatty acid by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochem J 1994; 300: 509-18; PMID:8002957
  • Kovacs B, Parry RV, Ma Z, Fan E, Shivers DK, Freiberg BA, Thomas AK, Rutherford R, Rumbley CA, Riley JL, et al. Ligation of CD28 by its natural ligand CD86 in the absence of TCR stimulation induces lipid raft polarization in human CD4 T cells. J Immunol 2005; 175: 7848-54; PMID:16339520; http://dx.doi.org/10.4049/jimmunol.175.12.7848
  • Brameshuber M, Weghuber J, Ruprecht V, Gombos I, Horváth I, Vigh L, Eckerstorfer P, Kiss E, Stockinger H, Schütz GJ. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J Biol Chem. 2010; 285: 41765-71; PMID:20966075; http://dx.doi.org/10.1074/jbc.M110.182121
  • Garcia-Saez AJ, Chiantia S, Schwille P. Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 2007; 282: 33537-44; PMID:17848582; http://dx.doi.org/10.1074/jbc.M706162200
  • Kuzmin PI, Akimov SA, Chizmadzhev YA, Zimmerberg J, Cohen FS. Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys J 2005; 88: 1120-33; PMID:15542550; http://dx.doi.org/10.1529/biophysj.104.048223
  • Xavier R, Brennan T, Li Q, McCormack C, Seed B. Membrane compartmentation is required for efficient T cell activation. Immunity 1998; 8: 723-32.; PMID:9655486; http://dx.doi.org/10.1016/S1074-7613(00)80577-4
  • Kabouridis PS, Janzen J, Magee AL, Ley SC. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol 2000; 30: 954-63; PMID:10741414; http://dx.doi.org/10.1002/1521-4141(200003)30:3%3c954::AID-IMMU954%3e3.0.CO;2-Y
  • Bennett V, Healy J. Membrane domains based on ankyrin and spectrin associated with cell–cell interactions. Cold Spring Harb Perspect Biol 2009; 1: 1-17; http://dx.doi.org/10.1101/cshperspect.a003012
  • Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 2002; 157: 1071-81; PMID:12058021; http://dx.doi.org/10.1083/jcb.200202050
  • Saxton MJ. The spectrin network as a barrier to lateral diffusion in erythrocytes. Biophys J 1989; 55: 21-8; PMID:2930822; http://dx.doi.org/10.1016/S0006-3495(89)82776-6
  • Pradhan D, Morrow JS. The spectrin-ankyrin skeleton controls CD45 surface display and interleukin-2 production. Immunity 2002; 17: 303-15; PMID:12354383; http://dx.doi.org/10.1016/S1074-7613(02)00396-5
  • Fuller CL, Braciale VL, Samelson LE. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol Rev 2003; 191: 220-36; PMID:12614363; http://dx.doi.org/10.1034/j.1600-065X.2003.00004.x
  • Pritchard MT, Ostberg JR, Evans SS, Burd R, Kraybill W, Bull JM, Repasky EA. Protocols for simulating the thermal component of fever: preclinical and clinical experience. Methods 2004; 32: 54-62; PMID:14624878; http://dx.doi.org/10.1016/S1046-2023(03)00187-7
  • Wang WC, Goldman LM, Schleider DM, Appenheimer MM, Subjeck JR, Repasky EA, Evans SS. Fever-range hyperthermia enhances L-selectin-dependent adhesion of lymphocytes to vascular endothelium. J Immunol 1998; 160: 961-9; PMID:9551935
  • Janes P W, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 2000; 12: 23-34; PMID:10723795
  • He HT, Lellouch A, Marguet D. Lipid rafts and the initiation of T cell receptor signaling. Semin Immunol 2005; 17: 23-33; PMID:15582486
  • Janes PW, Ley SC, Magee AI. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 1999; 147: 447-61; PMID:10525547
  • Grimm MJ, Zynda ER, Repasky EA. Temperature Matters: Cellular Targets of Hyperthermia in Cancer Biology and Immunology. In Prokaryotic and Eurkaryotic Heat Shock Proteins in Infections Disease. Dordrecht: Springer, 2010; 4:267-306.
  • Schade AE, Levine AD. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. J Immunol 2002; 168: 2233-9; PMID:11859110
  • Tuosto L, Parolini I, Schröder S, Sargiacomo M, Lanzavecchia A, Viola A. Organization of plasma membrane functional rafts upon T cell activation. Eur J Immunol 2001; 31: 345-9; PMID:11180097
  • Lillemeier B, Mörtelmaier M, Forstner M, Huppa J, Groves J, Davis M. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation Nature Immunology (2009); 11 (1), 90-96; PMID:20010844; http://dx.doi.org/10.1038/ni.1832
  • Millan J, Qaidi M, Alonso MA. Segregation of co-stimulatory components into specific T cell surface lipid rafts. Eur J Immunol 2001; 31: 467-73; PMID:11180111
  • Ostberg JR, Dayanc BE, Yuan M, Oflazoglu E, Repasky EA. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol 2007; 82: 1322-31; PMID:17711975
  • Wang XY, Ostberg JR, Repasky EA. Effect of fever-like whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation. J Immunol 1999; 162: 3378-87; PMID:10092792
  • Hughes CS, Repasky EA, Bankert RB, Johnson RJ, Subjeck JR. Effects of hyperthermia on spectrin expression patterns of murine lymphocytes. Radiat Res 1987; 112: 116-23; PMID:3659292
  • Valitutti S, Dessing K, Aktories K, Gallati H, Lanzavecchia A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy: role of T cell actin cytoskeleton. J Exp Med 1995; 181: 577-84; PMID:7836913
  • Rozdzial MM, Malissen B, and Finkel TH. Tyrosin-phosphorylated T cell receptor ζ chain associates with the actin cytoskeleton upon activation of mature T lymphocytes. Immunity 1995; 3: 623-33; PMID:7584152; http://dx.doi.org/10.1016/1074-7613(95)90133-7
  • Rodgers W, Zavzavadjian J. Glycolipid-enriched membrane domains are assembled into membrane patches by associating with the actin cytoskeleton. Exp Cell Res 2001; 267: 173-83; PMID:11426936
  • Villalba M, Bi K, Rodriguez F, Tanaka Y, Shoenberger S, Altman A. Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J Cell Biol 2001; 155: 331-8; PMID:11684704
  • Kumari S, Curado S, Mayya V, Dustin ML. T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim Biophys Acta. 2014; 1838: 546-56; PMID:23680625; http://dx.doi.org/10.1016/j.bbamem.2013.05.004
  • Topp MS, Riddell SR, Akatsuka Y, Jensen MC, Blattman JN, Greenberg PD. Restoration of CD28 expression in CD28- CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J Exp Med 2003; 198: 947-55; PMID:12963692; http://dx.doi.org/10.1084/jem.20021288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.