7,347
Views
134
CrossRef citations to date
0
Altmetric
Review

Mitochondrial ribosome assembly in health and disease

, , , &
Pages 2226-2250 | Received 06 May 2015, Accepted 16 May 2015, Published online: 30 Jun 2015

References

  • O'Brien TW. The general occurrence of 55 S ribosomes in mammalian liver mitochondria. J Biol Chem 1971; 246:3409-3417; PMID:4930061
  • O'Brien TW, Kalf GF. Ribosomes from rat liver mitochondria. I. Isolation procedure and contamination studies. J Biol Chem 1967; 242:2172-2179; PMID:6022863
  • Grivell LA, Reijnders L, Borst P. Isolation of yeast mitochondrial ribosomes highly active in protein synthesis. Biochim Biophys Acta 1971; 247:91-103; PMID:4946284
  • Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK. Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci U S A 2009; 106:9637-9642; PMID:19497863
  • Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 2003; 115:97-108; PMID:14532006; http://dx.doi.org/10.1016/S0092-8674(03)00762-1
  • Smits P, Smeitink JA, van den Heuvel LP, Huynen MA, Ettema TJ. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 2007; 35:4686-4703; PMID:17604309
  • Mears JA, Sharma MR, Gutell RR, McCook AS, Richardson PE, Caulfield TR, Agrawal RK, Harvey SC. A structural model for the large subunit of the mammalian mitochondrial ribosome. J Mol Biol 2006; 358:193-212; PMID:16510155
  • Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: The concept of translational activators. Biochim Biophys Acta 2012; 1833:286-294; PMID:22450032
  • O'Brien TW, O'Brien BJ, Norman RA. Nuclear MRP genes and mitochondrial disease. Gene 2005; 354:147-151; PMID:15908146; http://dx.doi.org/10.1016/j.gene.2005.03.026
  • Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 2012; 1819:1035-1054; PMID:22172991
  • Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 2014; 515:283-6; PMID:25271403
  • Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SH, Ramakrishnan V. Structure of the large ribosomal subunit from human mitochondria. Science 2014; 2:1258026; PMID:25278503
  • Amunts A, Brown A, Bai XC, Llácer JL, Hussain T, Emsley P, Long F, Murshudov G, Scheres SH, Ramakrishnan V. Structure of the yeast mitochondrial large ribosomal subunit. Science 2014; 343:1485-1489; PMID:24675956; http://dx.doi.org/10.1126/science.1249410
  • Amunts A, Brown A, Bai XC, Llácer JL, Hussain T, Emsley P, Long F, Murshudov G, Scheres SH, Ramakrishnan V. Structure of the yeast mitochondrial large ribosomal subunit. Science 2014; 343:1485-1489; PMID:24675956; http://dx.doi.org/10.1126/science.1249410
  • Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 2014; 505:515-519; PMID:24362565; http://dx.doi.org/10.1038/nature12890
  • Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK. Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proc Natl Acad Sci U S A 2014; 111:7284-7289; PMID:24799711; http://dx.doi.org/10.1073/pnas.1401657111
  • Amunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V. The structure of the human mitochondrial ribosome. Science 2015; 348:95-8; PMID:25838379
  • Woolford JL, Jr., Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-681; PMID:24190922; http://dx.doi.org/10.1534/genetics.113.153197
  • Chen SS, Williamson JR. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. J Mol Biol 2013; 425:767-779; PMID:23228329; http://dx.doi.org/10.1016/j.jmb.2012.11.040
  • Shajani Z, Sykes MT, Williamson JR. Assembly of bacterial ribosomes. Annu Rev Biochem 2011; 80:501-526; PMID:21529161; http://dx.doi.org/10.1146/annurev-biochem-062608-160432
  • Nierhaus KH. The assembly of prokaryotic ribosomes. Biochimie 1991; 73:739-755; PMID:1764520; http://dx.doi.org/10.1016/0300-9084(91)90054-5
  • Rotig A. Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 2011; 1807:1198-1205; PMID:21708121; http://dx.doi.org/10.1016/j.bbabio.2011.06.010
  • Jacobs HT, Turnbull DM. Nuclear genes and mitochondrial translation: a new class of genetic disease. Trends Genet 2005; 21:312-314; PMID:15922826; http://dx.doi.org/10.1016/j.tig.2005.04.003
  • Perez-Martinez X, Funes S, Camacho-Villasana Y, Marjavaara S, Tavares-Carreón F, Shingú-Vázquez M. Protein synthesis and assembly in mitochondrial disorders. Curr Top Med Chem 2008; 8:1335-1350; PMID:18991722; http://dx.doi.org/10.2174/156802608786141124
  • Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-1367; PMID:22146081; http://dx.doi.org/10.1089/ars.2011.4123
  • Mailloux RJ, Jin X, Willmore WG. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2014; 2:123-139; PMID:24455476; http://dx.doi.org/10.1016/j.redox.2013.12.011
  • Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H. Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome. Front. Physiol 2013; 4:183; PMID:23908630; http://dx.doi.org/10.3389/fphys.2013.00183
  • Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit. J Biol Chem 2001; 276:33181-33195; PMID:11402041; http://dx.doi.org/10.1074/jbc.M103236200
  • Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL. The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present. J Biol Chem 2001; 276:43958-43969; PMID:11551941; http://dx.doi.org/10.1074/jbc.M106510200
  • Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J 2003; 22:6438-6447; PMID:14657017; http://dx.doi.org/10.1093/emboj/cdg624
  • Jia L, Kaur J, Stuart RA. Mapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly. Eukaryot Cell 2009; 8:1792-1802; PMID:19783770; http://dx.doi.org/10.1128/EC.00219-09
  • Szyrach G, Ott M, Bonnefoy N, Neupert W, Herrmann JM. Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J 2003; 22:6448-6457; PMID:14657018; http://dx.doi.org/10.1093/emboj/cdg623
  • Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban N. YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 2009; 34:344-353; PMID:19450532; http://dx.doi.org/10.1016/j.molcel.2009.04.019
  • Bauerschmitt H, Mick DU, Deckers M, Vollmer C, Funes S, Kehrein K, Ott M, Rehling P, Herrmann JM. Ribosome-binding proteins Mdm38 and Mba1 display overlapping functions for regulation of mitochondrial translation. Mol Biol Cell 2010; 21:1937-1944; PMID:20427570; http://dx.doi.org/10.1091/mbc.E10-02-0101
  • Gruschke S, Gröne K, Heublein M, Hölz S, Israel L, Imhof A, Herrmann JM, Ott M. Proteins at the polypeptide tunnel exit of the yeast mitochondrial ribosome. J Biol Chem 2010; 285:19022-19028; PMID:20404317; http://dx.doi.org/10.1074/jbc.M110.113837
  • Ott M, Prestele M, Bauerschmitt H, Funes S, Bonnefoy N, Herrmann JM. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J 2006; 25, 1603-1610; PMID:16601683; http://dx.doi.org/10.1038/sj.emboj.7601070
  • Smirnov A, Entelis N, Martin RP, Tarassov I. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18. Genes Dev 2011; 25:1289-1305; PMID:21685364; http://dx.doi.org/10.1101/gad.624711
  • Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial mRNAs–like members of all families, similar but different. Biochim Biophys Acta 2010; 1797:1081-1085; PMID:20211597; http://dx.doi.org/10.1016/j.bbabio.2010.02.036
  • Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present. J Biol Chem 2001; 276:19363-19374; PMID:11279123; http://dx.doi.org/10.1074/jbc.M100727200
  • O'Brien TW. Properties of human mitochondrial ribosomes. IUBMB Life 2003; 55:505-513; PMID:14658756; http://dx.doi.org/10.1080/15216540310001626610
  • Shoji S, Dambacher CM, Shajani Z, Williamson JR, Schultz PG. Systematic chromosomal deletion of bacterial ribosomal protein genes. J Mol Biol 2011; 413:751-761; PMID:21945294; http://dx.doi.org/10.1016/j.jmb.2011.09.004
  • Lang BF, Laforest MJ, Burger G. Mitochondrial introns: a critical view. Trends Genet 2007; 23:119-125; PMID:17280737; http://dx.doi.org/10.1016/j.tig.2007.01.006
  • Belfort M, Roberts RJ. Homing endonucleases: keeping the house in order. Nucleic Acids Res 1997; 25:3379-3388; PMID:9254693; http://dx.doi.org/10.1093/nar/25.17.3379
  • Turk EM, Das V, Seibert RD, Andrulis ED. The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One 2013; 8:e78105; PMID:24143261; http://dx.doi.org/10.1371/journal.pone.0078105
  • Morales MJ, Dang YL, Lou YC, Sulo P, Martin NC. A 105-kDa protein is required for yeast mitochondrial RNase P activity. Proc Natl Acad Sci U S A 1992; 89:9875-9879; PMID:1409716; http://dx.doi.org/10.1073/pnas.89.20.9875
  • Chen JY, Martin NC. Biosynthesis of tRNA in yeast mitochondria. An endonuclease is responsible for the 3′-processing of tRNA precursors. J Biol Chem 1988; 263:13677-13682; PMID:2843529
  • Zhao Z, Su W, Yuan S, Huang Y. Functional conservation of tRNase ZL among Saccharomyces cerevisiae, Schizosaccharomyces pombe and humans. Biochem J 2009; 422:483-492; PMID:19555350; http://dx.doi.org/10.1042/BJ20090743
  • Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A, Siep M, van der Spek H, Grivell L, Stepien PP. The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem 2003; 278:1603-1611; PMID:12426313; http://dx.doi.org/10.1074/jbc.M208287200
  • Dziembowski A, Stepien PP. Genetic and biochemical approaches for analysis of mitochondrial degradosome from Saccharomyces cerevisiae. Methods Enzymol 2001; 342:367-378; PMID:11586909
  • Butow RA, Zhu H, Perlman P, Conrad-Webb H. The role of a conserved dodecamer sequence in yeast mitochondrial gene expression. Genome 1989; 31:757-760; PMID:2698840; http://dx.doi.org/10.1139/g89-134
  • Merten S, Synenki RM, Locker J, Christianson T, Rabinowitz M. Processing of precursors of 21S ribosomal RNA from yeast mitochondria. Proc Natl Acad Sci U S A 1980; 77:1417-1421; PMID:6990410; http://dx.doi.org/10.1073/pnas.77.3.1417
  • Stepien PP, Kokot L, Leski T, Bartnik E. The suv3 nuclear gene product is required for the in vivo processing of the yeast mitochondrial 21s rRNA transcripts containing the r1 intron. Curr Genet 1995; 27:234-238; PMID:7736607; http://dx.doi.org/10.1007/BF00326154
  • Margossian SP, Li H, Zassenhaus HP, Butow RA. The DExH box protein Suv3p is a component of a yeast mitochondrial 3′-to-5′ exoribonuclease that suppresses group I intron toxicity. Cell 1996; 84:199-209; PMID:8565066; http://dx.doi.org/10.1016/S0092-8674(00)80975-7
  • Osinga KA, Evers RF, Van der Laan JC, Tabak HF. A putative precursor for the small ribosomal RNA from mitochondria of Saccharomyces cerevisiae. Nucleic Acids Res 1981; 9:1351-1364; PMID:6262728; http://dx.doi.org/10.1093/nar/9.6.1351
  • Puchta O, Lubas M, Lipinski KA, Piatkowski J, Malecki M, Golik P. DMR1 (CCM1/YGR150C) of Saccharomyces cerevisiae encodes an RNA-binding protein from the pentatricopeptide repeat family required for the maintenance of the mitochondrial 15S ribosomal RNA. Genetics 2010; 184:959-973; PMID:20124025; http://dx.doi.org/10.1534/genetics.110.113969
  • Wiesenberger G, Fox TD. Pet127p, a membrane-associated protein involved in stability and processing of Saccharomyces cerevisiae mitochondrial RNAs. Mol Cell Biol 1997; 17:2816-2824; PMID:9111353
  • Fekete Z, Ellis TP, Schonauer MS, Dieckmann CL. Pet127 governs a 5′ -> 3′-exonuclease important in maturation of apocytochrome b mRNA in Saccharomyces cerevisiae. J Biol Chem 2008; 283:3767-3772; PMID:18086665; http://dx.doi.org/10.1074/jbc.M709617200
  • Haffter P, Fox TD. Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127. Mol Gen Genet 1992; 235:64-73; PMID:1279374; http://dx.doi.org/10.1007/BF00286182
  • Montoya J, Gaines GL, Attardi G. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 1983; 34:151-159; PMID:6883508; http://dx.doi.org/10.1016/0092-8674(83)90145-9
  • Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981; 290:470-474; PMID:7219536; http://dx.doi.org/10.1038/290470a0
  • Holzmann J, Frank P, Löffler E, Bennett KL, Gerner C, Rossmanith W. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008; 135:462-474; PMID:18984158; http://dx.doi.org/10.1016/j.cell.2008.09.013
  • Brzezniak LK, Bijata M, Szczesny RJ, Stepien PP. Involvement of human ELAC2 gene product in 3′ end processing of mitochondrial tRNAs. RNA Biol 2011; 8:616-626; PMID:21593607; http://dx.doi.org/10.4161/rna.8.4.15393
  • Sanchez MI, Mercer TR, Davies SM, Shearwood AM, Nygård KK, Richman TR, Mattick JS, Rackham O, Filipovska A. RNA processing in human mitochondria. Cell Cycle 2011; 10:2904-2916; PMID:21857155; http://dx.doi.org/10.4161/cc.10.17.17060
  • Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 1999; 33, 261-311; PMID:10690410; http://dx.doi.org/10.1146/annurev.genet.33.1.261
  • Motorin Y, Helm M. RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2011; 2:611-631; PMID:21823225
  • Ofengand J. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett 2002; 514:17-25; PMID:11904174; http://dx.doi.org/10.1016/S0014-5793(02)02305-0
  • Klootwijk J, Klein I, Grivell LA. Minimal post-transcriptional modification of yeast mitochondrial ribosomal RNA. J Mol Biol 1975; 97:337-350; PMID:1102710; http://dx.doi.org/10.1016/S0022-2836(75)80044-1
  • Sirum-Connolly K, Mason TL. Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 1993; 262:1886-1889; PMID:8266080; http://dx.doi.org/10.1126/science.8266080
  • Sirum-Connolly K, Mason TL. The role of nucleotide modifications in the yeast mitochondrial ribosome. Nucleic Acids Symp Ser 1995:73-75; PMID:8643404
  • Sirum-Connolly K, Peltier JM, Crain PF, McCloskey JA, Mason TL. Implications of a functional large ribosomal RNA with only three modified nucleotides. Biochimie 1995; 77:30-39; PMID:7541254; http://dx.doi.org/10.1016/0300-9084(96)88101-6
  • Pintard L, Bujnicki JM, Lapeyre B, Bonnerot C. MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. EMBO J 2002; 21:1139-1147; PMID:11867542; http://dx.doi.org/10.1093/emboj/21.5.1139
  • Ansmant I, Massenet S, Grosjean H, Motorin Y, Branlant C. Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA. Nucleic Acids Res 2000; 28:1941-1946; PMID:10756195; http://dx.doi.org/10.1093/nar/28.9.1941
  • Dubin DT, Taylor RH. Modification of mitochondrial ribosomal RNA from hamster cells: the presence of GmG and late-methylated UmGmU in the large subunit (17S) RNA. J Mol Biol 1978; 121:523-540; PMID:671547; http://dx.doi.org/10.1016/0022-2836(78)90398-4
  • Seidel-Rogol BL, McCulloch V, Shadel GS. Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet 2003; 33:23-24; PMID:12496758; http://dx.doi.org/10.1038/ng1064
  • Xu Z, O'Farrell HC, Rife JP, Culver GM. A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 2008; 15:534-536; PMID:18391965; http://dx.doi.org/10.1038/nsmb.1408
  • Metodiev MD, Lesko N, Park CB, Cámara Y, Shi Y, Wibom R, Hultenby K, Gustafsson CM, Larsson NG. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 2009; 9:386-397; PMID:19356719; http://dx.doi.org/10.1016/j.cmet.2009.03.001
  • Metodiev MD, Spåhr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, Habermann B, Larsson NG, Ruzzenente B. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet 2014; 10:e1004110; PMID:24516400; http://dx.doi.org/10.1371/journal.pgen.1004110
  • Camara Y, Asin-Cayuela J, Park CB, Metodiev MD, Shi Y, Ruzzenente B, Kukat C, Habermann B, Wibom R, Hultenby K, et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab 2011; 13:527-539; PMID:21531335; http://dx.doi.org/10.1016/j.cmet.2011.04.002
  • Spahr H, Habermann B, Gustafsson CM, Larsson NG, Hallberg BM. Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Proc Natl Acad Sci U S A 2012; 109:15253-15258; PMID:22949673; http://dx.doi.org/10.1073/pnas.1210688109
  • Baer RJ, Dubin DT. Methylated regions of hamster mitochondrial ribosomal RNA: structural and functional correlates. Nucleic Acids Res 1981; 9:323-337; PMID:6782552; http://dx.doi.org/10.1093/nar/9.2.323
  • Lee KW, Bogenhagen DF. Assignment of 2′-O-methyltransferases to Modification Sites on the Mammalian Mitochondrial Large Subunit 16S rRNA. J Biol Chem 2014; 289:24936-42, epub ahead of print; PMID:25074936
  • Rorbach J, Boesch P, Gammage PA, Nicholls TJ, Pearce SF, Patel D, Hauser A, Perocchi F, Minczuk M. MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Mol Biol Cell 2014; 9:01-0014; PMID:25009282
  • Ofengand J, Bakin A. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 1997; 266:246-268; PMID:9047361; http://dx.doi.org/10.1006/jmbi.1996.0737
  • Clementi N, Polacek N. Ribosome-associated GTPases: the role of RNA for GTPase activation. RNA Biol 2010; 7:521-527; PMID:20657179; http://dx.doi.org/10.4161/rna.7.5.12467
  • Goto S, Muto A, Himeno H. GTPases involved in bacterial ribosome maturation. J Biochem 2013; 153:403-414; PMID:23509007; http://dx.doi.org/10.1093/jb/mvt022
  • Kim do J, Jang JY, Yoon HJ, Suh SW. Crystal structure of YlqF, a circularly permuted GTPase: implications for its GTPase activation in 50 S ribosomal subunit assembly. Proteins 2008; 72:1363-1370; PMID:18536017; http://dx.doi.org/10.1002/prot.22112
  • Gulati M, Jain N, Anand B, Prakash B, Britton RA. Mutational analysis of the ribosome assembly GTPase RbgA provides insight into ribosome interaction and ribosome-stimulated GTPase activation. Nuc Acids Res 2013; 41:3217-3227; PMID:23325847; http://dx.doi.org/10.1093/nar/gks1475
  • Britton RA. Role of GTPases in bacterial ribosome assembly. Annu Rev Microbiol 2009; 63:155-176; PMID:19575570; http://dx.doi.org/10.1146/annurev.micro.091208.073225
  • Matsuo Y, Morimoto T, Kuwano M, Loh PC, Oshima T, Ogasawara N. The GTP-binding protein YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis. J Biol Chem 2006; 281:8110-8117; PMID:16431913; http://dx.doi.org/10.1074/jbc.M512556200
  • Achila D, Gulati M, Jain N, Britton RA. Biochemical characterization of ribosome assembly GTPase RbgA in Bacillus subtilis. J Biol Chem 2012; 287:8417-23; PMID:22267738; http://dx.doi.org/10.1074/jbc.M111.331322
  • Matsuo Y, Oshima T, Loh PC, Morimoto T, Ogasawara N. Isolation and characterization of a dominant negative mutant of Bacillus subtilis GTP-binding protein, YlqF, essential for biogenesis and maintenance of the 50 S ribosomal subunit. J Biol Chem 2007; 282:25270-25277; PMID:17613524
  • Gulati M, Jain N, Davis JH, Williamson JR, Britton RA. Functional interaction between ribosomal protein L6 and RbgA during ribosome assembly. PLoS Genet 2014; 10:e1004694; PMID:25330043
  • Jomaa A, Jain N, Davis JH, Williamson JR, Britton RA, Ortega J. Functional domains of the 50S subunit mature late in the assembly process. Nucleic Acids Res 2014; 42:3419-3435; PMID:24335279
  • Uicker WC, Schaefer L, Britton RA. The essential GTPase RbgA (YlqF) is required for 50S ribosome assembly in Bacillus subtilis. Mol Microbiol 2006; 59:528-40; PMID:16390447
  • Barrientos A, Korr D, Barwell KJ, Sjulsen C, Gajewski CD, Manfredi G, Ackerman S, Tzagoloff A. MTG1 codes for a conserved protein required for mitochondrial translation. Mol Biol Cell 2003; 14:2292-2302; PMID:12808030
  • Li N, Chen Y, Guo Q, Zhang Y, Yuan Y, Ma C, Deng H, Lei J, Gao N. Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Nucleic Acids Res 2013; 41:7073-7083; PMID:23700310
  • Kotani T, Akabane S, Takeyasu K, Ueda T, Takeuchi N. Human G-proteins, ObgH1 and Mtg1, associate with the large mitochondrial ribosome subunit and are involved in translation and assembly of respiratory complexes. Nucleic Acids Res 2013; 41:3713-3722; PMID:23396448
  • Sato A, Kobayashi G, Hayashi H, Yoshida H, Wada A, Maeda M, Hiraga S, Takeyasu K, Wada C. The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells 2005; 10:393-408; PMID:15836769
  • Datta K, Fuentes JL, Maddock JR. The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2. Mol Biol Cell 2005; 16:954-963; PMID:15591131
  • Anand B, Surana P, Prakash B. Deciphering the catalytic machinery in 30S ribosome assembly GTPase YqeH. PLoS One 2010; 5:e9944; PMID:20376346; http://dx.doi.org/10.1371/journal.pone.0009944
  • Paul MF, Alushin GM, Barros MH, Rak M, Tzagoloff A. The putative GTPase encoded by MTG3 functions in a novel pathway for regulating assembly of the small subunit of yeast mitochondrial ribosomes. J Biol Chem 2012; 287:24346-24355; PMID:22621929
  • He J, Cooper HM, Reyes A, Di Re M, Kazak L, Wood SR, Mao CC, Fearnley IM, Walker JE, Holt IJ. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit. Nucleic Acids Res 2012; 40:6097-6108; PMID:22447445
  • Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, Shirouzu M, Yokoyama S, Fucini P, Agrawal RK. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol Cell 2005; 18:319-329; PMID:15866174
  • Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN. Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit. Biochem J 2010; 430:551-558; PMID:20604745
  • Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D. ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation. Nucleic Acids Res 2010; 38:5554-5568; PMID:20430825
  • Pan C, Russell R. Roles of DEAD-box proteins in RNA and RNP Folding. RNA Biol 2010; 7:667-676; PMID:21045543
  • Linder P, Jankowsky E. From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 2011; 12:505-516; PMID:21779027
  • Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene 2006; 367:17-37; PMID:16337753; http://dx.doi.org/10.1016/j.gene.2005.10.019
  • Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Struct Biol 2010; 20:313-324; PMID:20456941
  • Young CL, Khoshnevis S, Karbstein K. Cofactor-dependent specificity of a DEAD-box protein. Proc Natl Acad Sci U S A 2013; 110:E2668-2676; PMID:23630256
  • Martin R, Straub AU, Doebele C, Bohnsack MT. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 2013; 10:4-18; PMID:22922795
  • Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P, Merrick WC, Sonenberg N. mRNA helicases: the tacticians of translational control. Nat Mol Cell Biol 2011; 12:235-245; PMID:21427765
  • Kaberdin VR, Blasi U. Bacterial helicases in post-transcriptional control. Biochim Biophys Acta 2013; 1829:878-883; PMID:23291566
  • Peil L, Virumäe K, Remme J. Ribosome assembly in Escherichia coli strains lacking the RNA helicase DeaD/CsdA or DbpA. FEBS J 2008 275:3772-3782. Epub 02008 Jun 06528; PMID:18565105
  • Charollais J, Pflieger D, Vinh J, Dreyfus M, Iost I. The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol Microbiol 2003; 48:1253-1265; PMID:12787353
  • Fuller-Pace FV, Nicol SM, Reid AD, Lane DP. DbpA: a DEAD box protein specifically activated by 23s rRNA. EMBO J 1993; 12:3619-3626; PMID:8253085
  • Diges CM, Uhlenbeck OC. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J 2001; 20:5503-5512; PMID:11574482
  • Sharpe Elles LM, Sykes MT, Williamson JR, Uhlenbeck OC. A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit. Nucleic Acids Res 2009; 37:6503-6514; PMID:19734347
  • Osswald M, Döring T, Brimacombe R. The ribosomal neighbourhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site. Nucleic Acids Res 1995; 23:4635-4641; PMID:8524654
  • Maguire BA, Wild DG. The roles of proteins L28 and L33 in the assembly and function of Escherichia coli ribosomes in vivo. Mol Microbiol 1997; 23:237-245; PMID:9044258
  • Franceschi FJ, Nierhaus KH. Ribosomal proteins L15 and L16 are mere late assembly proteins of the large ribosomal subunit. Analysis of an Escherichia coli mutant lacking L15. J Biol Chem 1990; 265:16676-16682; PMID:2204629
  • Martin-Marcos P, Hinnebusch AG, Tamame M. Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation. Mol Cell Biol 2007; 27:5968-5985; PMID:17548477; http://dx.doi.org/10.1128/MCB.00019-07
  • De Silva D, Fontanesi F, Barrientos A. The DEAD-Box protein Mrh4 functions in the assembly of the mitochondrial large ribosomal subunit. Cell Metab 2013; 18:712-725; PMID:24206665; http://dx.doi.org/10.1016/j.cmet.2013.10.007
  • Valgardsdottir R, Brede G, Eide LG, Frengen E, Prydz H. Cloning and characterization of MDDX28, a putative dead-box helicase with mitochondrial and nuclear localization. J Biol Chem 2001; 276:32056-32063; PMID:11350955; http://dx.doi.org/10.1074/jbc.M011629200
  • Valgardsdottir R, Prydz H. Transport signals and transcription-dependent nuclear localization of the putative DEAD-box helicase MDDX28. J Biol Chem 2003; 278:21146-21154; PMID:12663657; http://dx.doi.org/10.1074/jbc.M300888200
  • Valgardsdottir R, Ottersen OP, Prydz H. Regulated compartmentalization of the putative DEAD-box helicase MDDX28 within the mitochondria in COS-1 cells. Exp Cell Res 2004; 299:294-302; PMID:15350529; http://dx.doi.org/10.1016/j.yexcr.2004.05.019
  • Tu YT, Barrientos A. The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly. Cell Rep 2015; 12:00058-00053; PMID:25683708
  • Antonicka H, Shoubridge EA. Mitochondrial RNA Granules Are Centers for Posttranscriptional RNA Processing and Ribosome Biogenesis. Cell Rep 2015; 12:00055-00058; PMID:25683715
  • Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 2008; 283:3665-3675; PMID:18063578; http://dx.doi.org/10.1074/jbc.M708444200
  • Wredenberg A, Lagouge M, Bratic A, Metodiev MD, Spåhr H, Mourier A, Freyer C, Ruzzenente B, Tain L, Grönke S, et al. MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and mammals. PLoS Genet 2013; 9:e1003178; PMID:23300484; http://dx.doi.org/10.1371/journal.pgen.1003178
  • Rorbach J, Gammage PA, Minczuk M. C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Res 2012; 40:4097-4109; PMID:22238376; http://dx.doi.org/10.1093/nar/gkr1282
  • Fung S, Nishimura T, Sasarman F, Shoubridge EA. The conserved interaction of C7orf30 with MRPL14 promotes biogenesis of the mitochondrial large ribosomal subunit and mitochondrial translation. Mol Biol Cell 2013; 24:184-193; PMID:23171548; http://dx.doi.org/10.1091/mbc.E12-09-0651
  • Wanschers BF, Szklarczyk R, Pajak A, van den Brand MA, Gloerich J, Rodenburg RJ, Lightowlers RN, Nijtmans LG, Huynen MA. C7orf30 specifically associates with the large subunit of the mitochondrial ribosome and is involved in translation. Nucleic Acids Res 2012; 40:4040-4051; PMID:22238375; http://dx.doi.org/10.1093/nar/gkr1271
  • Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 2005; 123:277-289; PMID:16239145; http://dx.doi.org/10.1016/j.cell.2005.08.003
  • Koppen M, Metodiev MD, Casari G, Rugarli EI, Langer T. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol 2007; 27:758-767; PMID:17101804; http://dx.doi.org/10.1128/MCB.01470-06
  • Antonicka H, Sasarman F, Nishimura T, Paupe V, Shoubridge EA. The Mitochondrial RNA-Binding Protein GRSF1 Localizes to RNA Granules and Is Required for Posttranscriptional Mitochondrial Gene Expression. Cell Metab 2013 17:386-398; PMID:23473033; http://dx.doi.org/10.1016/j.cmet.2013.02.006
  • Jourdain AA, Koppen M, Wydro M, Rodley CD, Lightowlers RN, Chrzanowska-Lightowlers ZM, Martinou JC. GRSF1 Regulates RNA Processing in Mitochondrial RNA Granules. Cell Metab 2013; 17:399-410; PMID:23473034; http://dx.doi.org/10.1016/j.cmet.2013.02.005
  • Traub P, Nomura M. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A 1968; 59:777-784; PMID:4868216; http://dx.doi.org/10.1073/pnas.59.3.777
  • Held WA, Mizushima S, Nomura M. Reconstitution of Escherichia coli 30 S ribosomal subunits from purified molecular components. J Biol Chem 1973; 248:5720-5730; PMID:4579428
  • Nierhaus KH, Dohme F. Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci U S A 1974; 71:4713-4717; PMID:4612527; http://dx.doi.org/10.1073/pnas.71.12.4713
  • Dohme F, Nierhaus KH. Total reconstitution and assembly of 50 S subunits from Escherichia coli ribosomes in vitro. J Mol Biol 1976; 107:585-599; PMID:794489; http://dx.doi.org/10.1016/S0022-2836(76)80085-X
  • Sieber G, Nierhaus KH. Kinetic and thermodynamic parameters of the assembly in vitro of the large subunit from Escherichia coli ribosomes. Biochemistry 1978; 17:3505-3511; PMID:356881; http://dx.doi.org/10.1021/bi00610a013
  • Stern S, Powers T, Changchien LM, Noller HF. RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science 1989; 244:783-790; PMID:2658053; http://dx.doi.org/10.1126/science.2658053
  • Adilakshmi T, Bellur DL, Woodson SA. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature 2008; 455:1268-1272; PMID:18784650; http://dx.doi.org/10.1038/nature07298
  • Talkington MW, Siuzdak G, Williamson JR. An assembly landscape for the 30S ribosomal subunit. Nature 2005; 438:628-632; PMID:16319883; http://dx.doi.org/10.1038/nature04261
  • Mulder AM, Yoshioka C, Beck AH, Bunner AE, Milligan RA, Potter CS, Carragher B, Williamson JR. Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science 2010; 330:673-677; PMID:21030658; http://dx.doi.org/10.1126/science.1193220
  • Bubunenko M, Korepanov A, Court DL, Jagannathan I, Dickinson D, Chaudhuri BR, Garber MB, Culver GM. 30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15. RNA 2006; 12:1229-1239; PMID:16682557; http://dx.doi.org/10.1261/rna.2262106
  • Sykes MT, Shajani Z, Sperling E, Beck AH, Williamson JR. Quantitative proteomic analysis of ribosome assembly and turnover in vivo. J Mol Biol 2010; 403:331-345; PMID:20709079; http://dx.doi.org/10.1016/j.jmb.2010.08.005
  • Lindahl L. Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. J Mol Biol 1975; 92:15-37; PMID:1097701; http://dx.doi.org/10.1016/0022-2836(75)90089-3
  • Sashital DG, Greeman CA, Lyumkis D, Potter CS, Carragher B, Williamson JR. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. Elife 2014; 3; PMID:25313868; http://dx.doi.org/10.7554/eLife.04491
  • Youngman EM, Green R. Affinity purification of in vivo-assembled ribosomes for in vitro biochemical analysis. Methods 2005; 36:305-312; PMID:16076457; http://dx.doi.org/10.1016/j.ymeth.2005.04.007
  • Gupta N, Culver GM. Multiple in vivo pathways for Escherichia coli small ribosomal subunit assembly occur on one pre-rRNA. Nat Struct Mol Biol 2014; 21:937-943; PMID:25195050; http://dx.doi.org/10.1038/nsmb.2887
  • Liu M, Spremulli L. Interaction of mammalian mitochondrial ribosomes with the inner membrane. J Biol Chem 2000; 275:29400-29406; PMID:10887179; http://dx.doi.org/10.1074/jbc.M002173200
  • Kaur J, Stuart RA. Truncation of the Mrp20 protein reveals new ribosome-assembly subcomplex in mitochondria. EMBO Rep 2011; 12:950-955; PMID:21779004; http://dx.doi.org/10.1038/embor.2011.133
  • Bogenhagen DF, Martin DW, Koller A. Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids. Cell Metab 2014; 19:618-629; PMID:24703694; http://dx.doi.org/10.1016/j.cmet.2014.03.013
  • Borowski LS, Dziembowski A, Hejnowicz MS, Stepien PP, Szczesny RJ. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res 2013; 41:1223-1240; PMID:23221631; http://dx.doi.org/10.1093/nar/gks1130
  • Holt IJ, He J, Mao CC, Boyd-Kirkup JD, Martinsson P, Sembongi H, Reyes A, Spelbrink JN. Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion 2007; 7:311-321; PMID:17698423; http://dx.doi.org/10.1016/j.mito.2007.06.004
  • Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, Clayton DA. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 2011; 31:4994-5010; PMID:22006021; http://dx.doi.org/10.1128/MCB.05694-11
  • Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson NG, Jakobs S. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 2011; 108:13534-13539; PMID:21808029; http://dx.doi.org/10.1073/pnas.1109263108
  • Kucej M, Butow RA. Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 2007; 17:586-592; PMID:17981466; http://dx.doi.org/10.1016/j.tcb.2007.08.007
  • Iborra FJ, Kimura H, Cook PR. The functional organization of mitochondrial genomes in human cells. BMC Biol 2004; 2:9; PMID:15157274; http://dx.doi.org/10.1186/1741-7007-2-9
  • He J, Cooper HM, Reyes A, Di Re M, Sembongi H, Litwin TR, Gao J, Neuman KC, Fearnley IM, Spinazzola A, et al. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res 2012; 40:6109-6121; PMID:22453275; http://dx.doi.org/10.1093/nar/gks266
  • Dalla Rosa I, Durigon R, Pearce SF, Rorbach J, Hirst EM, Vidoni S, Reyes A, Brea-Calvo G, Minczuk M, Woellhaf MW, et al. MPV17L2 is required for ribosome assembly in mitochondria. Nucleic Acids Res 2014; 42:8500-15; PMID:24948607
  • Lee KW, Okot-Kotber C, LaComb JF, Bogenhagen DF. Mitochondrial rRNA Methyltransferase Family Members are Positioned to Modify Nascent rRNA in Foci Near the mtDNA Nucleoid. J Biol Chem 2013; 288:31386-31399; PMID:24036117; http://dx.doi.org/10.1074/jbc.M113.515692
  • Hess KC, Liu J, Manfredi G, Mühlschlegel FA, Buck J, Levin LR, Barrientos A. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. FASEB J 2014; 28:4369-4380; PMID:25002117; http://dx.doi.org/10.1096/fj.14-252890
  • Ruzzenente B, Metodiev MD, Wredenberg A, Bratic A, Park CB, Cámara Y, Milenkovic D, Zickermann V, Wibom R, Hultenby K, et al. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J 2012; 31:443-456; PMID:22045337; http://dx.doi.org/10.1038/emboj.2011.392
  • Chujo T, Ohira T, Sakaguchi Y, Goshima N, Nomura N, Nagao A, Suzuki T. LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucleic Acids Res 2012; 40:8033-8047; PMID:22661577; http://dx.doi.org/10.1093/nar/gks506
  • Rackham O, Davies SM, Shearwood AM, Hamilton KL, Whelan J, Filipovska A. Pentatricopeptide repeat domain protein 1 lowers the levels of mitochondrial leucine tRNAs in cells. Nucleic Acids Res 2009; 37:5859-5867; PMID:19651879; http://dx.doi.org/10.1093/nar/gkp627
  • Prachar J. Mouse and human mitochondrial nucleoid–detailed structure in relation to function. Gen Physiol Biophys 2010; 29:160-174; PMID:20577028; http://dx.doi.org/10.4149/gpb_2010_02_160
  • Kehrein K, Schilling R, Möller-Hergt BV, Wurm CA, Jakobs S, Lamkemeyer T, Langer T, Ott M. Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies. Cell Rep 2015; 12:S2211-1247; PMID:25683707
  • Fiori A, Mason TL, Fox TD. Evidence that synthesis of the Saccharomyces cerevisiae mitochondrially encoded ribosomal protein Var1p may be membrane localized. Eukaryot Cell 2003; 2:651-653; PMID:12796311
  • Keil M, Bareth B, Woellhaf MW, Peleh V, Prestele M, Rehling P, Herrmann JM. Oxa1-ribosome complexes coordinate the assembly of cytochrome c oxidase in mitochondria. J Biol Chem 2012; 287:34484-34493; PMID:22904327; http://dx.doi.org/10.1074/jbc.M112.382630
  • Schneider HC, Berthold J, Bauer MF, Dietmeier K, Guiard B, Brunner M, Neupert W. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 1994; 371:768-774; PMID:7935837; http://dx.doi.org/10.1038/371768a0
  • Stiburek L, Fornuskova D, Wenchich L, Pejznochova M, Hansikova H, Zeman J. Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J Mol Biol 2007; 374:506-516; PMID:17936786; http://dx.doi.org/10.1016/j.jmb.2007.09.044
  • Bonnefoy N, Kermorgant M, Groudinsky O, Minet M, Slonimski PP, Dujardin G. Cloning of a human gene involved in cytochrome oxidase assembly by functional complementation of an oxa1- mutation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1994; 91:11978-11982; PMID:7991568; http://dx.doi.org/10.1073/pnas.91.25.11978
  • Jacobs HT. Disorders of mitochondrial protein synthesis. Hum Mol Genet 2003; 12:R293-301; PMID:12928485; http://dx.doi.org/10.1093/hmg/ddg285
  • Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ, Arnos KS, Cortopassi GA, Jaber L, Rotter JI, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 1993; 4:289-294; PMID:7689389; http://dx.doi.org/10.1038/ng0793-289
  • Zhao H, Li R, Wang Q, Yan Q, Deng JH, Han D, Bai Y, Young WY, Guan MX. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet 2004; 74:139-152; PMID:14681830; http://dx.doi.org/10.1086/381133
  • Ding Y, Leng J, Fan F, Xia B, Xu P. The role of mitochondrial DNA mutations in hearing loss. Biochem Genet 2013; 51:588-602. Epub 12013 Apr 10521; PMID:23605717; http://dx.doi.org/10.1007/s10528-013-9589-6
  • Estivill X, Govea N, Barceló E, Badenas C, Romero E, Moral L, Scozzri R, D'Urbano L, Zeviani M, Torroni A. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet 1998; 62:27-35; PMID:9490575; http://dx.doi.org/10.1086/301676
  • Recht MI, Fourmy D, Blanchard SC, Dahlquist KD, Puglisi JD. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J Mol Biol 1996; 262:421-436; PMID:8893854; http://dx.doi.org/10.1006/jmbi.1996.0526
  • Fourmy D, Recht MI, Blanchard SC, Puglisi JD. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 1996; 274:1367-1371; PMID:8910275; http://dx.doi.org/10.1126/science.274.5291.1367
  • Lambert T. Antibiotics that affect the ribosome. Rev Sci Tech 2012; 31:57-64; PMID:22849268
  • Davies J, Davis BD. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem 1968; 243:3312-3316; PMID:5656371
  • Ogle JM, Ramakrishnan V. Structural insights into translational fidelity. Annu Rev Biochem 2005; 74:129-177; PMID:15952884; http://dx.doi.org/10.1146/annurev.biochem.74.061903.155440
  • Purohit P, Stern S. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 1994; 370:659-662; PMID:8065453; http://dx.doi.org/10.1038/370659a0
  • Hamasaki K, Rando RR. Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness. Biochemistry 1997; 36:12323-12328; PMID:9315872; http://dx.doi.org/10.1021/bi970962r
  • Xing G, Chen Z, Cao X. Mitochondrial rRNA and tRNA and hearing function. Cell Res 2007; 17:227-239; PMID:17199108
  • Bykhovskaya Y, Mengesha E, Wang D, Yang H, Estivill X, Shohat M, Fischel-Ghodsian N. Human mitochondrial transcription factor B1 as a modifier gene for hearing loss associated with the mitochondrial A1555G mutation. Mol Genet Metab 2004; 82:27-32; PMID:15110318; http://dx.doi.org/10.1016/j.ymgme.2004.01.020
  • Li X, Li R, Lin X, Guan MX. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem 2002; 277:27256-27264; PMID:12011058; http://dx.doi.org/10.1074/jbc.M203267200
  • Bykhovskaya Y, Mengesha E, Wang D, Yang H, Estivill X, Shohat M, Fischel-Ghodsian N. Phenotype of non-syndromic deafness associated with the mitochondrial A1555G mutation is modulated by mitochondrial RNA modifying enzymes MTO1 and GTPBP3. Mol Genet Metab 2004; 83:199-206; PMID:15542390; http://dx.doi.org/10.1016/j.ymgme.2004.07.009
  • Li X, Guan MX. A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Mol Cell Biol 2002; 22:7701-7711; PMID:12370316; http://dx.doi.org/10.1128/MCB.22.21.7701-7711.2002
  • Colby G, Wu M, Tzagoloff A. MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J Biol Chem 1998; 273:27945-27952; PMID:9774408; http://dx.doi.org/10.1074/jbc.273.43.27945
  • Coulbault L, Deslandes B, Herlicoviez D, Read MH, Leporrier N, Schaeffer S, Mouadil A, Lombès A, Chapon F, Jauzac P, et al. A novel mutation 3090 G>A of the mitochondrial 16S ribosomal RNA associated with myopathy. Biochem Biophys Res Commun 2007; 362:601-605; PMID:17761147; http://dx.doi.org/10.1016/j.bbrc.2007.08.040
  • Liu Z, Song Y, Li D, He X, Li S, Wu B, Wang W, Gu S, Zhu X, Wang X, et al. The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy. J Med Genet 2014; 51:176-184; PMID:24367055; http://dx.doi.org/10.1136/jmedgenet-2013-101818
  • Sacconi S, Salviati L, Gooch C, Bonilla E, Shanske S, DiMauro S. Complex neurologic syndrome associated with the G1606A mutation of mitochondrial DNA. Arch Neurol 2002 59:1013-1015; PMID:12056939; http://dx.doi.org/10.1001/archneur.59.6.1013
  • Tiranti V, D'Agruma L, Pareyson D, Mora M, Carrara F, Zelante L, Gasparini P, Zeviani M. A novel mutation in the mitochondrial tRNA(Val) gene associated with a complex neurological presentation. Ann Neurol 1998; 43:98-101; PMID:9450773; http://dx.doi.org/10.1002/ana.410430116
  • McFarland R, Clark KM, Morris AA, Taylor RW, Macphail S, Lightowlers RN, Turnbull DM. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet 2002; 30:145-146; PMID:11799391; http://dx.doi.org/10.1038/ng819
  • Arredondo JJ, Gallardo ME, García-Pavía P, Domingo V, Bretón B, García-Silva MT, Sedano MJ, Martín MA, Arenas J, Cervera M, et al. Mitochondrial tRNA valine as a recurrent target for mutations involved in mitochondrial cardiomyopathies. Mitochondrion 2012; 12:357-362; PMID:21986556; http://dx.doi.org/10.1016/j.mito.2011.09.010
  • Horvath R, Bender A, Abicht A, Holinski-Feder E, Czermin B, Trips T, Schneiderat P, Lochmüller H, Klopstock T. Heteroplasmic mutation in the anticodon-stem of mitochondrial tRNA(Val) causing MNGIE-like gastrointestinal dysmotility and cachexia. J Neurol 2009; 256:810-815; PMID:19252805; http://dx.doi.org/10.1007/s00415-009-5023-8
  • de Coo IF, Sistermans EA, de Wijs IJ, Catsman-Berrevoets C, Busch HF, Scholte HR, de Klerk JB, van Oost BA, Smeets HJ. A mitochondrial tRNA(Val) gene mutation (G1642A) in a patient with mitochondrial myopathy, lactic acidosis, and stroke-like episodes. Neurology 1998; 50:293-295; PMID:9443499; http://dx.doi.org/10.1212/WNL.50.1.293
  • Taylor RW, Chinnery PF, Haldane F, Morris AA, Bindoff LA, Wilson J, Turnbull DM. MELAS associated with a mutation in the valine transfer RNA gene of mitochondrial DNA. Ann Neurol 1996; 40:459-462; PMID:8797538; http://dx.doi.org/10.1002/ana.410400318
  • Chalmers RM, Lamont PJ, Nelson I, Ellison DW, Thomas NH, Harding AE, Hammans SR. A mitochondrial DNA tRNA(Val) point mutation associated with adult-onset Leigh syndrome. Neurology 1997; 49:589-592; PMID:9270602; http://dx.doi.org/10.1212/WNL.49.2.589
  • Tanji K, Kaufmann P, Naini AB, Lu J, Parsons TC, Wang D, Willey JZ, Shanske S, Hirano M, Bonilla E, et al. A novel tRNA(Val) mitochondrial DNA mutation causing MELAS. J Neurol Sci 2008; 270:23-27; PMID:18314141; http://dx.doi.org/10.1016/j.jns.2008.01.016
  • Yan N, Cai S, Guo B, Mou Y, Zhu J, Chen J, Zhang T, Li R, Liu X. A novel mitochondrial tRNA(Val) T1658C mutation identified in a CPEO family. Mol Vis 2010; 16:1736-1742; PMID:20806033
  • Menezes MJ, Guo Y, Zhang J, Riley LG, Cooper ST, Thorburn DR, Li J, Dong D, Li Z, Glessner J, et al. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure, and lactic acidemia. Hum Mol Genet 2015; 24:2297-307; PMID:25556185
  • Miller C, Saada A, Shaul N, Shabtai N, Ben-Shalom E, Shaag A, Hershkovitz E, Elpeleg O. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol 2004; 56:734-738; PMID:15505824; http://dx.doi.org/10.1002/ana.20282
  • Saada A, Shaag A, Arnon S, Dolfin T, Miller C, Fuchs-Telem D, Lombes A, Elpeleg O. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J Med Genet 2007; 44:784-786; PMID:17873122; http://dx.doi.org/10.1136/jmg.2007.053116
  • Smits P, Saada A, Wortmann SB, Heister AJ, Brink M, Pfundt R, Miller C, Haas D, Hantschmann R, Rodenburg RJ, et al. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur J Hum Genet 2011; 19:394-399; PMID:21189481; http://dx.doi.org/10.1038/ejhg.2010.214
  • Galmiche L, Serre V, Beinat M, Assouline Z, Lebre AS, Chretien D, Nietschke P, Benes V, Boddaert N, Sidi D, et al. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 2011; 32:1225-1231; PMID:21786366; http://dx.doi.org/10.1002/humu.21562
  • Serre V, Rozanska A, Beinat M, Chretien D, Boddaert N, Munnich A, Rötig A, Chrzanowska-Lightowlers ZM. Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. Biochim Biophys Acta 2013; 1832:1304-1312; PMID:23603806; http://dx.doi.org/10.1016/j.bbadis.2013.04.014
  • Carroll CJ, Isohanni P, Pöyhönen R, Euro L, Richter U, Brilhante V, Götz A, Lahtinen T, Paetau A, Pihko H, et al. Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy. J Med Genet 2013; 50:151-159; PMID:23315540; http://dx.doi.org/10.1136/jmedgenet-2012-101375
  • Diaconu M, Kothe U, Schlünzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 2005; 121, 991-1004; PMID:15989950; http://dx.doi.org/10.1016/j.cell.2005.04.015
  • Ghezzi D, Saada A, D'Adamo P, Fernandez-Vizarra E, Gasparini P, Tiranti V, Elpeleg O, Zeviani M. FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. Am J Hum Genet 2008; 83:415-423. Epub 2008 Sep 1014; PMID:18771761; http://dx.doi.org/10.1016/j.ajhg.2008.08.009
  • Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A, Casari G. Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci 2009; 29:9244-9254; PMID:19625515; http://dx.doi.org/10.1523/JNEUROSCI.1532-09.2009
  • Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A, Finardi A, Cagnoli C, Tempia F, Frontali M, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 2010; 42:313-321; PMID:20208537; http://dx.doi.org/10.1038/ng.544
  • Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF, Teer JK, Hansen NF, Cruz P, Mullikin For The Nisc Comparative Sequencing Program JC, Blakesley RW, et al. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet 2011; 7:e1002325; PMID:22022284; http://dx.doi.org/10.1371/journal.pgen.1002325
  • Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P, De Michele G, Filla A, Cocozza S, Marconi R, et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998; 93:973-983; PMID:9635427; http://dx.doi.org/10.1016/S0092-8674(00)81203-9
  • Pfeffer G, Gorman GS, Griffin H, Kurzawa-Akanbi M, Blakely EL, Wilson I, Sitarz K, Moore D, Murphy JL, Alston CL, et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 2014; 137:1323-1336; PMID:24727571; http://dx.doi.org/10.1093/brain/awu060
  • Wedding IM, Koht J, Tran GT, Misceo D, Selmer KK, Holmgren A, Frengen E, Bindoff L, Tallaksen CM, Tzoulis C. Spastic paraplegia type 7 is associated with multiple mitochondrial DNA deletions. PLoS One 2014; 9:e86340; PMID:24466038; http://dx.doi.org/10.1371/journal.pone.0086340
  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008; 134:112-123; PMID:18614015; http://dx.doi.org/10.1016/j.cell.2008.06.016
  • Fischel-Ghodsian N, Prezant TR, Bu X, Oztas S. Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am J Otolaryngol 1993; 14:399-403; PMID:8285309; http://dx.doi.org/10.1016/0196-0709(93)90113-L
  • Li R, Xing G, Yan M, Cao X, Liu XZ, Bu X, Guan MX, et al. Cosegregation of C-insertion at position 961 with the A1555G mutation of the mitochondrial 12S rRNA gene in a large Chinese family with maternally inherited hearing loss. Am J Med Genet A 2004; 124A:113-117; PMID:14699607; http://dx.doi.org/10.1002/ajmg.a.20305
  • Distelmaier F, Haack TB, Catarino CB, Gallenmüller C, Rodenburg RJ, Strom TM, Baertling F, Meitinger T, Mayatepek E, Prokisch H, et al. MRPL44 mutations cause a slowly progressive multisystem disease with childhood-onset hypertrophic cardiomyopathy. Neurogenetics 2015; 24; PMID:25797485
  • Klebe S, Depienne C, Gerber S, Challe G, Anheim M, Charles P, Fedirko E, Lejeune E, Cottineau J, Brusco A, et al. Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain 2012; 135:2980-2993; PMID:23065789; http://dx.doi.org/10.1093/brain/aws240

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.