2,635
Views
16
CrossRef citations to date
0
Altmetric
Review

Uncovering metabolism in rhabdomyosarcoma

&
Pages 184-195 | Received 14 May 2015, Accepted 07 Jul 2015, Published online: 29 Jan 2016

References

  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324(5930):1029-33; PMID:19460998; http://dx.doi.org/10.1126/science.1160809
  • Tennant DA, Durán RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis. 2009; 30(8):1269-80; PMID:19321800; http://dx.doi.org/10.1093/carcin/bgp070
  • Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010; 330(6009):1340-4; PMID:21127244; http://dx.doi.org/10.1126/science.1193494
  • Dang CV. Links between metabolism and cancer. Genes Dev. 2012; 26(9):877-90; PMID:22549953; http://dx.doi.org/10.1101/gad.189365.112
  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7(1):11-20; PMID:18177721; http://dx.doi.org/10.1016/j.cmet.2007.10.002
  • Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008; 13(6):472-82; PMID:18538731; http://dx.doi.org/10.1016/j.ccr.2008.05.005
  • Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008; 134(5):703-7; PMID:18775299; http://dx.doi.org/10.1016/j.cell.2008.08.021
  • Muñoz-Pinedo C, El Mjiyad N, Ricci JE. Cancer metabolism: current perspectives and future directions. Cell Death Dis. 2012; 3:e248; PMID:22237205; http://dx.doi.org/10.1038/cddis.2011.123
  • Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013; 123(9):3685-92; PMID:23999443; http://dx.doi.org/10.1172/JCI69741
  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007; 104(49):19345-50; PMID:18032601; http://dx.doi.org/10.1073/pnas.0709747104
  • Erickson JW, Cerione RA. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget. 2010; 1(8):734-40; PMID:21234284
  • Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010; 35(8):427-33; PMID:20570523; http://dx.doi.org/10.1016/j.tibs.2010.05.003
  • Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013; 123(9):3678-84; PMID:23999442; http://dx.doi.org/10.1172/JCI69600
  • Pandey PR, Liu W, Xing F, Fukuda K, Watabe K. Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat Anticancer Drug Discov. 2012; 7(2):185-97; PMID:22338595; http://dx.doi.org/10.2174/157489212799972891
  • Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010; 6(4):551-62; PMID:20373869; http://dx.doi.org/10.2217/fon.10.11
  • Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity. J Toxicol. 2012; 2012:645460; PMID:22919381
  • Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013; 12(12):931-47; PMID:24287781; http://dx.doi.org/10.1038/nrd4002
  • Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009; 8(7):579-91; PMID:19478820; http://dx.doi.org/10.1038/nrd2803
  • Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, Trnkova L, Kruseova J, Eckschlager T, Kizek R. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett. 2012; 4(6):1247-53; PMID:23205122
  • Wolden SL, Alektiar KM. Sarcomas across the age spectrum. Semin Radiat Oncol. 2010; 20(1):45-51. 10.1016/j.semradonc.2009.09.003; PMID:19959030; http://dx.doi.org/10.1016/j.semradonc.2009.09.003
  • Dasgupta R, Rodeberg DA. Update on rhabdomyosarcoma. Semin Pediatr Surg. 2012; 21(1):68-78; PMID:22248972; http://dx.doi.org/10.1053/j.sempedsurg.2011.10.007
  • Parham DM, Alaggio R, Coffin CM. Myogenic tumors in children and adolescents. Pediatr Dev Pathol. 2012; 15(1 Suppl):211-38; PMID:22420729; http://dx.doi.org/10.2350/10-12-0953-PB.1
  • Ognjanovic S, Linabery AM, Charbonneau B, Ross JACP. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975-2005. Cancer. 2009; 115:4218-26; PMID:19536876; http://dx.doi.org/10.1002/cncr.24465
  • Hettmer S, Li Z, Billin AN, Barr FG, Cornelison DD, Ehrlich AR, Guttridge DC, Hayes-Jordan A, Helman LJ, Houghton PJ, et al. Rhabdomyosarcoma: current challenges and their implications for developing therapies. Cold Spring Harb Perspect Med. 2014; 4(11):a025650; PMID:25368019; http://dx.doi.org/10.1101/cshperspect.a025650
  • Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 2004; 18(21):2614-26 10.1101/gad.1244004; PMID:15489287; http://dx.doi.org/10.1101/gad.1244004
  • Hettmer S, Liu J, Miller CM, Lindsay MC, Sparks CA, Guertin DA, Bronson RT, Langenau DM, Wagers AJ. Sarcomas induced in discrete subsets of prospectively isolated skeletal muscle cells. Proc Natl Acad Sci U S A. 2011; 108(50):20002-7 10.1073/pnas.1111733108; PMID:22135462; http://dx.doi.org/10.1073/pnas.1111733108
  • Rubin BP, Nishijo K, Chen HI, Yi X, Schuetze DP, Pal R, Prajapati SI, Abraham J, Arenkiel BR, Chen QR, et al. Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. Cancer Cell. 2011; 19(2):177-91 10.1016/j.ccr.2010.12.023; PMID:21316601; http://dx.doi.org/10.1016/j.ccr.2010.12.023
  • Blum JM, Añó L, Li Z, Van Mater D, Bennett BD, Sachdeva M, Lagutina I, Zhang M, Mito JK, Dodd LG, et al. Distinct and overlapping sarcoma subtypes initiated from muscle stem and progenitor cells. Cell Rep. 2013; 5(4):933-40; PMID:24239359; http://dx.doi.org/10.1016/j.celrep.2013.10.020
  • Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon LI. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 2007; 21:1382-95; PMID:17510286; http://dx.doi.org/10.1101/gad.1545007
  • Hatley ME, Tang W, Garcia MR, Finkelstein D, Millay DP, Liu N, Graff J, Galindo RL, Olson EN. A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell. 2012; 22(4):536-46; PMID:23079662; http://dx.doi.org/10.1016/j.ccr.2012.09.004
  • Dagher R, Helman L. Rhabdomyosarcoma: an overview. Oncologist. 1999; 4(1):34-44; PMID:10337369
  • Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013; 20(6):387-97; PMID:24113309; http://dx.doi.org/10.1097/PAP.0b013e3182a92d0d
  • Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, Ambrogio L, Auclair D, Wang J, Song YK, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014; 4(2):216-31; PMID:24436047; http://dx.doi.org/10.1158/2159-8290.CD-13-0639
  • Skapek SX, Anderson J, Barr FG, Bridge JA, Gastier-Foster JM, Parham DM, Rudzinski ER, Triche T, Hawkins DS. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children's oncology group report. Pediatr Blood Cancer. 2013; 60(9):1411-7; PMID:23526739; http://dx.doi.org/10.1002/pbc.24532
  • Missiaglia E, Williamson D, Chisholm J, Wirapati P, Pierron G, Petel F, Concordet JP, Thway K, Oberlin O, Pritchard-Jones K, et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol. 2012; 30(14):1670-7; PMID:22454413; http://dx.doi.org/10.1200/JCO.2011.38.5591
  • Williamson D, Missiaglia E, de Reyniès A, Pierron G, Thuille B, Palenzuela G, Thway K, Orbach D, Laé M, Fréneaux P, et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010; 28(13):2151-8; PMID:20351326; http://dx.doi.org/10.1200/JCO.2009.26.3814
  • Mercado GE, Xia SJ, Zhang C, Ahn EH, Gustafson DM, Laé M, Ladanyi M, Barr FG. Identification of PAX3-FKHR-regulated genes differentially expressed between alveolar and embryonal rhabdomyosarcoma: focus on MYCN as a biologically relevant target. Genes Chromosomes Cancer. 2008; 47(6):510-20; PMID:18335505; http://dx.doi.org/10.1002/gcc.20554
  • Naini S, Etheridge KT, Adam SJ, Qualman SJ, Bentley RC, Counter CM, Linardic CM. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res. 2008; 68(23):9583-8; PMID:19047133; http://dx.doi.org/10.1158/0008-5472.CAN-07-6178
  • Tonelli R, McIntyre A, Camerin C, Walters ZS, Di Leo K, Selfe J, Purgato S, Missiaglia E, Tortori A, Renshaw J, et al. Antitumor activity of sustained N-myc reduction in rhabdomyosarcomas and transcriptional block by antigene therapy. Clin Cancer Res. 2012; 18(3):796-807; PMID:22065083; http://dx.doi.org/10.1158/1078-0432.CCR-11-1981
  • Anderson J, Gordon A, McManus A, Shipley J, Pritchard-Jones K. Disruption of imprinted genes at chromosome region 11p15.5 in paediatric rhabdomyosarcoma. Neoplasia. 1999; 1(4):340-8; PMID:10935489; http://dx.doi.org/10.1038/sj.neo.7900052
  • Thalhammer V, Lopez-Garcia LA, Herrero-Martin D, Hecker R, Laubscher D, Gierisch ME, Wachtel M, Bode P, Nanni P, Blank B, et al. PLK1 phosphorylates PAX3-FOXO1, the inhibition of which triggers regression of alveolar Rhabdomyosarcoma. Cancer Res. 2015; 75(1):98-110; PMID:25398439; http://dx.doi.org/10.1158/0008-5472.CAN-14-1246
  • Abraham J, Nuñez-Álvarez Y, Hettmer S, Carrió E, Chen HI, Nishijo K, Huang ET, Prajapati SI, Walker RL, Davis S, et al. Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes Dev. 2014; 28(14):1578-91; PMID:25030697; http://dx.doi.org/10.1101/gad.238733.114
  • Loupe JM, Miller PJ, Ruffin DR, Stark MW, Hollenbach AD. Inhibiting phosphorylation of the oncogenic PAX3-FOXO1 reduces alveolar rhabdomyosarcoma phenotypes identifying novel therapy options. Oncogenesis. 2015; 4:e145; PMID:25821947; http://dx.doi.org/10.1038/oncsis.2015.2
  • Scrable H, Cavenee W, Ghavimi F, Lovell M, Morgan K, Sapienza CCP. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci U S A. 1989; 86:7480-4; PMID:2798419; http://dx.doi.org/10.1073/pnas.86.19.7480
  • Taylor JG, Cheuk AT, Tsang PS, Chung JY, Song YK, Desai K, Yu Y, Chen QR, Shah K, Youngblood V, et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Invest. 2009; 119:3395-407; PMID:19809159
  • Stratton MR, Fisher C, Gusterson BA, Cooper CS. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res. 1989; 49(22):6324-7; PMID:2680062
  • Shukla N, Ameur N, Yilmaz I, Nafa K, Lau CY, Marchetti A, Borsu L, Barr FG, Ladanyi M. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res. 2012; 18(3):748-57; PMID:22142829; http://dx.doi.org/10.1158/1078-0432.CCR-11-2056
  • Taylor AC, Shu L, Danks MK, Poquette CA, Shetty S, Thayer MJ, Houghton PJ, Harris LC. P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines. Med Pediatr Oncol. 2000; 35(2):96-103; PMID:10918230; http://dx.doi.org/10.1002/1096-911X(200008)35:2%3c96::AID-MPO2%3e3.0.CO;2-Z
  • Xia SJ, Barr FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer. 2005; 41(16):2513-27; PMID:16213703; http://dx.doi.org/10.1016/j.ejca.2005.08.003
  • Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993; 3(2):113-7; PMID:8098985; http://dx.doi.org/10.1038/ng0293-113
  • Graf Finckenstein F, Shahbazian V, Davicioni E, Ren YX, Anderson MJ. PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis. Oncogene. 2008; 27(14):2004-14 10.1038/sj.onc.1210835; PMID:17922034; http://dx.doi.org/10.1038/sj.onc.1210835
  • Keller C, Guttridge DC. Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS J. 2013; 280(17):4323-34; PMID:23822136; http://dx.doi.org/10.1111/febs.12421
  • Marshall AD, Grosveld GC. Alveolar rhabdomyosarcoma - The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle. 2012; 2(1):25; PMID:23206814; http://dx.doi.org/10.1186/2044-5040-2-25
  • Kikuchi K, Hettmer S, Aslam MI, Michalek JE, Laub W, Wilky BA, Loeb DM, Rubin BP, Wagers AJ, Keller C. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma. PLoS Genet. 2014; 10(1):e1004107; PMID:24453992; http://dx.doi.org/10.1371/journal.pgen.1004107
  • Armoni M, Quon MJ, Maor G, Avigad S, Shapiro DN, Harel C, Esposito D, Goshen Y, Yaniv I, Karnieli E. PAX3/forkhead homolog in rhabdomyosarcoma oncoprotein activates glucose transporter 4 gene expression in vivo and in vitro. J Clin Endocrinol Metab. 2002; 87(11):5312-24; PMID:12414908; http://dx.doi.org/10.1210/jc.2002-020318
  • Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013; 4:e532; PMID:23470539; http://dx.doi.org/10.1038/cddis.2013.60
  • Ramírez-Peinado S, Alcázar-Limones F, Lagares-Tena L, El Mjiyad N, Caro-Maldonado A, Tirado OM, Muñoz-Pinedo C. 2-deoxyglucose induces Noxa-dependent apoptosis in alveolar rhabdomyosarcoma. Cancer Res. 2011; 71(21):6796-806; PMID:21911456; http://dx.doi.org/10.1158/0008-5472.CAN-11-0759
  • Li HG, Wang Q, Li HM, Kumar S, Parker C, Slevin M, Kumar P. PAX3 and PAX3-FKHR promote rhabdomyosarcoma cell survival through downregulation of PTEN. Cancer Lett. 2007; 253(2):215-23; PMID:17350164; http://dx.doi.org/10.1016/j.canlet.2007.01.020
  • Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci U S A. 1998; 95(26):15406-11; PMID:9860981; http://dx.doi.org/10.1073/pnas.95.26.15406
  • Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998; 273(22):13375-8; PMID:9593664; http://dx.doi.org/10.1074/jbc.273.22.13375
  • Jothi M, Nishijo K, Keller C, Mal AK. AKT and PAX3-FKHR cooperation enforces myogenic differentiation blockade in alveolar rhabdomyosarcoma cell. Cell Cycle. 2012; 11(5):895-908; PMID:22333587; http://dx.doi.org/10.4161/cc.11.5.19346
  • Van de Sande T, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV. Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res. 2002; 62(3):642-6; PMID:11830512
  • Liu L, Wang YD, Wu J, Cui J, Chen T. Carnitine palmitoyltransferase 1A (CPT1A): a transcriptional target of PAX3-FKHR and mediates PAX3-FKHR-dependent motility in alveolar rhabdomyosarcoma cells. BMC Cancer. 2012; 12:154; PMID:22533991; http://dx.doi.org/10.1186/1471-2407-12-154
  • Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002; 13(7):2276-88; PMID:12134068; http://dx.doi.org/10.1091/mbc.01-12-0584
  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004; 64(11):3892-9; PMID:15172999; http://dx.doi.org/10.1158/0008-5472.CAN-03-2904
  • Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005; 24(41):6314-22; PMID:16007201; http://dx.doi.org/10.1038/sj.onc.1208773
  • Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001; 15(7):807-26; PMID:11297505; http://dx.doi.org/10.1101/gad.887201
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3(10):721-32; PMID:13130303; http://dx.doi.org/10.1038/nrc1187
  • De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012; 16 Suppl 2:S17-27; PMID:22443084; http://dx.doi.org/10.1517/14728222.2011.639361
  • Stephen AG, Esposito D, Bagni RK, McCormick F. Dragging ras back in the ring. Cancer Cell. 2014; 25(3):272-81; PMID:24651010; http://dx.doi.org/10.1016/j.ccr.2014.02.017
  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985; 318(6046):533-8; PMID:3906410; http://dx.doi.org/10.1038/318533a0
  • Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002; 297(5578):102-4; PMID:12098700; http://dx.doi.org/10.1126/science.1071489
  • Dang CV. MYC on the path to cancer. Cell. 2012; 149(1):22-35; PMID:22464321; http://dx.doi.org/10.1016/j.cell.2012.03.003
  • Wysoczynski M, Shin DM, Kucia M, Ratajczak MZ. Selective upregulation of interleukin-8 by human rhabdomyosarcomas in response to hypoxia: therapeutic implications. Int J Cancer. 2010; 126(2):371-81; PMID:19588509; http://dx.doi.org/10.1002/ijc.24732
  • Gales D, Clark C, Manne U, Samuel T. The Chemokine CXCL8 in Carcinogenesis and Drug Response. ISRN Oncol. 2013; 2013:859154; PMID:24224100
  • Murphy PM, Tiffany HL. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science. 1991; 253(5025):1280-3; PMID:1891716; http://dx.doi.org/10.1126/science.1891716
  • Kilic M, Kasperczyk H, Fulda S, Debatin KM. Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance. Oncogene. 2007; 26(14):2027-38; PMID:17043658; http://dx.doi.org/10.1038/sj.onc.1210008
  • Hinson AR, Jones R, Crose LE, Belyea BC, Barr FG, Linardic CM. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: utility and pitfalls. Front Oncol. 2013; 3:183; PMID:23882450; http://dx.doi.org/10.3389/fonc.2013.00183
  • Lei L, Mason S, Liu D, Huang Y, Marks C, Hickey R, Jovin IS, Pypaert M, Johnson RS, Giordano FJ. Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel-Lindau protein. Mol Cell Biol. 2008; 28(11):3790-803; PMID:18285456; http://dx.doi.org/10.1128/MCB.01580-07
  • Guenther MK, Graab U, Fulda S. Synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in rhabdomyosarcoma. Cancer Lett. 2013; 337(2):200-9; PMID:23684925; http://dx.doi.org/10.1016/j.canlet.2013.05.010
  • Kilic-Eren M, Boylu T, Tabor V. Targeting PI3K/Akt represses Hypoxia inducible factor-1alpha activation and sensitizes Rhabdomyosarcoma and Ewing's sarcoma cells for apoptosis. Cancer Cell Int. 2013; 13(1):36; PMID:23590596; http://dx.doi.org/10.1186/1475-2867-13-36
  • Wan X, Shen N, Mendoza A, Khanna C, Helman LJ. CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia. 2006; 8(5):394-401; PMID:16790088; http://dx.doi.org/10.1593/neo.05820
  • Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004; 64(7):2627-33; PMID:15059920; http://dx.doi.org/10.1158/0008-5472.CAN-03-0846
  • Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 2008; 10(5):611-8; PMID:18391940; http://dx.doi.org/10.1038/ncb1724
  • Pilkis SJ, El-Maghrabi MR, Pilkis J, Claus TH, Cumming DA. Fructose 2,6-bisphosphate. A new activator of phosphofructokinase. J Biol Chem. 1981; 256(7):3171-4; PMID:6451625
  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005; 65(1):177-85; PMID:15665293
  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006; 126(1):107-20; PMID:16839880; http://dx.doi.org/10.1016/j.cell.2006.05.036
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011; 11(2):85-95; PMID:21258394; http://dx.doi.org/10.1038/nrc2981
  • Chen X, Stewart E, Shelat AA, Qu C, Bahrami A, Hatley M, Wu G, Bradley C, McEvoy J, Pappo A, et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell. 2013; 24(6):710-24; PMID:24332040; http://dx.doi.org/10.1016/j.ccr.2013.11.002
  • Ito S, Fukusato T, Nemoto T, Sekihara H, Seyama Y, Kubota S. Coexpression of glucose transporter 1 and matrix metalloproteinase-2 in human cancers. J Natl Cancer Inst. 2002; 94(14):1080-91; PMID:12122099; http://dx.doi.org/10.1093/jnci/94.14.1080
  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science. 2006; 312(5780):1650-3; PMID:16728594; http://dx.doi.org/10.1126/science.1126863
  • Cheung EC, Vousden KH. The role of p53 in glucose metabolism. Curr Opin Cell Biol. 2010; 22(2):186-91; PMID:20061129; http://dx.doi.org/10.1016/j.ceb.2009.12.006
  • Puzio-Kuter AM. The Role of p53 in Metabolic Regulation. Genes Cancer. 2011; 2(4):385-91; PMID:21779507; http://dx.doi.org/10.1177/1947601911409738
  • Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. Metabolic Regulation by p53 Family Members. Cell Metab. 2013; 18(5):617-33; PMID:23954639; http://dx.doi.org/10.1016/j.cmet.2013.06.019
  • Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 2012; 72(2):560-7; PMID:22123926; http://dx.doi.org/10.1158/0008-5472.CAN-11-1215
  • Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer. 2009; 9(10):691-700; PMID:19759539; http://dx.doi.org/10.1038/nrc2715
  • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A. 2010; 107(16):7461-6; PMID:20351271; http://dx.doi.org/10.1073/pnas.1002459107
  • Zhang M, Linardic CM, Kirsch DG. RAS and ROS in rhabdomyosarcoma. Cancer Cell. 2013; 24(6):689-91; PMID:24332036; http://dx.doi.org/10.1016/j.ccr.2013.11.015
  • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 2010; 107(19):8788-93; PMID:20421486; http://dx.doi.org/10.1073/pnas.1003428107
  • SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma. Coda DM, Lingua MF, Morena D, Foglizzo V, Bersani F, Ala U, Ponzetto C, Taulli R. Cell Cycle 2015; 14(9):1389-402; http://dx.doi.org/10.1080/15384101.2015.1005993.
  • Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C, Lu W, Burger JA, Croce CM, Plunkett W, et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol. 2012; 14(3):276-86; PMID:22344033; http://dx.doi.org/10.1038/ncb2432
  • Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011; 19(3):387-400; PMID:21397861; http://dx.doi.org/10.1016/j.ccr.2011.01.038
  • Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012; 336(6084):1040-4; PMID:22628656; http://dx.doi.org/10.1126/science.1218595
  • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008; 18(1):54-61; PMID:18387799; http://dx.doi.org/10.1016/j.gde.2008.02.003
  • Kalhan SC, Hanson RW. Resurgence of serine: an often neglected but indispensable amino Acid. J Biol Chem. 2012; 287(24):19786-91; PMID:22566694; http://dx.doi.org/10.1074/jbc.R112.357194
  • Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014; 39(4):191-8; PMID:24657017
  • Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013; 493(7433):542-6; PMID:23242140; http://dx.doi.org/10.1038/nature11743
  • Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS, Tucci P, Agostini M, Mineo TC, Levine AJ, Melino G. p73 regulates serine biosynthesis in cancer. Oncogene 2014; 33(42):5039-46; http://dx.doi.org.10.1038/onc.2013.456.
  • Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, Mak TW, Wu M, Yang X. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol. 2013; 15(8):991-1000; PMID:23811687; http://dx.doi.org/10.1038/ncb2789
  • Jiang P, Du W, Yang X. A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle. 2013; 12(24):3720-6; PMID:24270845; http://dx.doi.org/10.4161/cc.27267
  • Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M, Hüttinger-Kirchhof N, Oswald C, Friedl P, Gattenlöhner S, et al. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell. 2006; 10(4):281-93; PMID:17045206; http://dx.doi.org/10.1016/j.ccr.2006.08.024
  • Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012; 12(8):564-71; PMID:22810811; http://dx.doi.org/10.1038/nrc3278
  • Je EM, An CH, Yoo NJ, Lee SH. Mutational and expressional analyses of NRF2 and KEAP1 in sarcomas. Tumori. 2012; 98(4):510-5; PMID:23052169
  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A. 2010; 107(16):7455-60; PMID:20378837; http://dx.doi.org/10.1073/pnas.1001006107
  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004; 304(5670):596-600; PMID:15105503; http://dx.doi.org/10.1126/science.1095569
  • Cano CE, Gommeaux J, Pietri S, Culcasi M, Garcia S, Seux M, Barelier S, Vasseur S, Spoto RP, Pébusque MJ, et al. Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res. 2009; 69(1):219-26; PMID:19118006; http://dx.doi.org/10.1158/0008-5472.CAN-08-2320
  • Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y. Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem. 1999; 274(17):12061-6; PMID:10207030; http://dx.doi.org/10.1074/jbc.274.17.12061
  • Yoon KA, Nakamura Y, Arakawa H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet. 2004; 49(3):134-40; PMID:14986171; http://dx.doi.org/10.1007/s10038-003-0122-3
  • Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell. 2009; 34(6):663-73; PMID:19560419; http://dx.doi.org/10.1016/j.molcel.2009.04.029
  • Rotblat B, Melino G, Knight RA. NRF2 and p53: Januses in cancer? Oncotarget. 2012; 3(11):1272-83; PMID:23174755
  • Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012; 72(19):4875-82; PMID:23002210; http://dx.doi.org/10.1158/0008-5472.CAN-12-2217
  • Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 2013; 8:277-302; PMID:23092187; http://dx.doi.org/10.1146/annurev-pathol-020712-163923
  • Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010; 1805(1):105-17; PMID:19931353
  • Chen L, Shern JF, Wei JS, Yohe ME, Song YK, Hurd L, Liao H, Catchpoole D, Skapek SX, Barr FG, et al. Clonality and evolutionary history of rhabdomyosarcoma. PLoS Genet. 2015; 11(3):e1005075; PMID:25768946; http://dx.doi.org/10.1371/journal.pgen.1005075
  • Ignatius MS, Chen E, Elpek NM, Fuller AZ, Tenente IM, Clagg R, Liu S, Blackburn JS, Linardic CM, Rosenberg AE, et al. In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell. 2012; 21(5):680-93; PMID:22624717; http://dx.doi.org/10.1016/j.ccr.2012.03.043
  • Blackburn JS, Langenau DM. Zebrafish as a model to assess cancer heterogeneity, progression and relapse. Dis Model Mech. 2014; 7(7):755-62; PMID:24973745; http://dx.doi.org/10.1242/dmm.015842
  • Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009; 8(23):3984-4001; PMID:19923890; http://dx.doi.org/10.4161/cc.8.23.10238
  • Li G, Kikuchi K, Radka M, Abraham J, Rubin BP, Keller C. IL-4 receptor blockade abrogates satellite cell: rhabdomyosarcoma fusion and prevents tumor establishment. Stem Cells. 2013; 31(11):2304-12. PMID:23897781; http://dx.doi.org/10.1002/stem.1491
  • Van Gaal JC, De Bont ES, Kaal SE, Versleijen-Jonkers Y, van der Graaf WT. Building the bridge between rhabdomyosarcoma in children, adolescents and young adults: The road ahead. Crit Rev Oncol Hematol. 2011; 82(3):259-79; PMID:21802959
  • Wachtel M, Schäfer BW. Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev. 2010; 36(4):318-27. PMID:20223596; http://dx.doi.org/10.1016/j.ctrv.2010.02.007
  • Crose LE, Linardic CM. Receptor tyrosine kinases as therapeutic targets in rhabdomyosarcoma. Sarcoma. 2011; 2011:756982. PMID:21253475; http://dx.doi.org/10.1155/2011/756982
  • Ferguson M, Hingorani P, Gupta AA. Emerging molecular-targeted therapies in early-phase clinical trials and preclinical models. Am Soc Clin Oncol Educ Book. 2013:420-4. PMID:23714564; http://dx.doi.org/10.1200/EdBook_AM.2013.33.420
  • Kalloniatis M, Marc RE, Murry RF. Amino acid signatures in the primate retina. J Neurosci. 1996; 16(21):6807-29; PMID:8824321
  • Marc RE, Murry RF, Basinger SF. Pattern recognition of amino acid signatures in retinal neurons. J Neurosci. 1995; 15(7 Pt 2):5106-29; PMID:7623139
  • Marc RE, Cameron D. A molecular phenotype atlas of the zebrafish retina. J Neurocytol. 2001; 30(7):593-654; PMID:12118163; http://dx.doi.org/10.1023/A:1016516818393
  • Marc RE, Jones BW. Molecular phenotyping of retinal ganglion cells. J Neurosci. 2002; 22(2):413-27; PMID:11784786
  • Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res. 2003; 22(5):607-55; PMID:12892644; http://dx.doi.org/10.1016/S1350-9462(03)00039-9
  • Weigel B, Malempati S, Reid JM, Voss SD, Cho SY, Chen HX, Krailo M, Villaluna D, Adamson PC, Blaney SM. Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2014; 61(3):452-6. PMID:23956055; http://dx.doi.org/10.1002/pbc.24605
  • Schöffski P, Adkins D, Blay JY, Gil T, Elias AD, Rutkowski P, Pennock GK, Youssoufian H, Gelderblom H, Willey R, et al. An open-label, phase 2 study evaluating the efficacy and safety of the anti-IGF-1R antibody cixutumumab in patients with previously treated advanced or metastatic soft-tissue sarcoma or Ewing family of tumours. Eur J Cancer. 2013; 49(15):3219-28. PMID:23835252; http://dx.doi.org/10.1016/j.ejca.2013.06.010
  • Pappo AS, Vassal G, Crowley JJ, Bolejack V, Hogendoorn PC, Chugh R, Ladanyi M, Grippo JF, Dall G, Staddon AP, et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: results of a Sarcoma Alliance for Research Through Collaboration study. Cancer. 2014; 120(16):2448-56. PMID:24797726; http://dx.doi.org/10.1002/cncr.28728
  • Bagatell R, Norris R, Ingle AM, Ahern C, Voss S, Fox E, Little AR, Weigel BJ, Adamson PC, Blaney S. Phase 1 trial of temsirolimus in combination with irinotecan and temozolomide in children, adolescents and young adults with relapsed or refractory solid tumors: a Children's Oncology Group Study. Pediatr Blood Cancer. 2014; 61(5):833-9. PMID:24249672; http://dx.doi.org/10.1002/pbc.24874
  • Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B, DuBois SG, Doyle LA, Chen H, Blaney SM. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2015; 62(3):440-4. PMID:25446280; http://dx.doi.org/10.1002/pbc.25334
  • Chugh R, Wathen JK, Maki RG, Benjamin RS, Patel SR, Meyers PA, Priebat DA, Reinke DK, Thomas DG, Keohan ML, et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J Clin Oncol. 2009; 27(19):3148-53. PMID:19451433; http://dx.doi.org/10.1200/JCO.2008.20.5054
  • Baruchel S, Pappo A, Krailo M, Baker KS, Wu B, Villaluna D, Lee-Scott M, Adamson PC, Blaney SM. A phase 2 trial of trabectedin in children with recurrent rhabdomyosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft tissue sarcomas: a report from the Children's Oncology Group. Eur J Cancer. 2012; 48(4):579-85. PMID:22088484; http://dx.doi.org/10.1016/j.ejca.2011.09.027
  • Warwick AB, Malempati S, Krailo M, Melemed A, Gorlick R, Ames MM, Safgren SL, Adamson PC, Blaney SM. Phase 2 trial of pemetrexed in children and adolescents with refractory solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer. 2013; 60(2):237-41. PMID:22745043; http://dx.doi.org/10.1002/pbc.24244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.