2,255
Views
19
CrossRef citations to date
0
Altmetric
Review

Molding BRCA2 function through its interacting partners

, &
Pages 3389-3395 | Received 14 May 2015, Accepted 07 Sep 2015, Published online: 13 Nov 2015

References

  • Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, Evans DG, Izatt L, Eeles RA, Adlard J, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 2013; 105:812-22; PMID:23628597; http://dx.doi.org/10.1093/jnci/djt095
  • Connor F, Smith A, Wooster R, Stratton M, Dixon A, Campbell E, Tait TM, Freeman T, Ashworth A. Cloning, chromosomal mapping and expression pattern of the mouse Brca2 gene. Hum Mol Genet 1997; 6:291-300; PMID:9063750; http://dx.doi.org/10.1093/hmg/6.2.291
  • Wooster R, Bignell GR, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378:789-92; PMID:8524414; http://dx.doi.org/10.1038/378789a0
  • Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 1997; 386:804-10; PMID:9126738; http://dx.doi.org/10.1038/386804a0
  • Yu VP, Koehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev 2000; 14:1400-6; PMID:10837032
  • Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 1997; 272:31941-4; PMID:9405383; http://dx.doi.org/10.1074/jbc.272.51.31941
  • Mizuta R, LaSalle JM, Cheng HL, Shinohara A, Ogawa H, Copeland N, Jenkins NA, Lalande M, Alt FW. RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc Natl Acad Sci USA 1997; 94:6927-32; PMID:9192668; http://dx.doi.org/10.1073/pnas.94.13.6927
  • Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, West SC. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 2005; 434:598-604; PMID:15800615; http://dx.doi.org/10.1038/nature03404
  • Carreira A, Hilario J, Amitani I, Baskin RJ, Shivji MKK, Venkitaraman AR, Kowalczykowski SC. The BRC Repeats of BRCA2 Modulate the DNA-Binding Selectivity of RAD51. Cell 2009; 136:1032-43; PMID:19303847; http://dx.doi.org/10.1016/j.cell.2009.02.019
  • Carreira A, Kowalczykowski SC. Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms. Proc Natl Acad Sci USA 2011; 108:10448-53; PMID:21670257; http://dx.doi.org/10.1073/pnas.1106971108
  • Jensen RB, Carreira A, Kowalczykowski SC. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 2010; 467:678-83; PMID:20729832; http://dx.doi.org/10.1038/nature09399
  • Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, Zheng N, Chen P-L, Lee W-H, Pavletich NP. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 2002; 297:1837-48; PMID:12228710; http://dx.doi.org/10.1126/science.297.5588.1837
  • San Filippo J, Chi P, Sehorn MG, Etchin J, Krejci L, Sung P. Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J Biol Chem 2006; 281:11649-57; PMID:16513631; http://dx.doi.org/10.1074/jbc.M601249200
  • Liu J, Doty T, Gibson B, Heyer W-D. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 2010; 17:1260-2; PMID:20729859; http://dx.doi.org/10.1038/nsmb.1904
  • Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, Griffith JD, West SC. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 2010; 17:1263-5; PMID:20729858; http://dx.doi.org/10.1038/nsmb.1905
  • Nagaraju G, Scully R. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair 2007; 6:1018-31; PMID:17379580; http://dx.doi.org/10.1016/j.dnarep.2007.02.020
  • Zhou Q, Mazloum N, Mao N, Kojic M, Holloman WK. Dss1 regulates interaction of Brh2 with DNA. Biochemistry 2009; 48:11929-38; PMID:19919104; http://dx.doi.org/10.1021/bi901775j
  • Li J, Zou C, Bai Y, Wazer DE, Band V, Gao Q. DSS1 is required for the stability of BRCA2. Oncogene 2005; 25:1186-94; http://dx.doi.org/10.1038/sj.onc.1209153
  • Jeyasekharan AD, Liu Y, Hattori H, Pisupati V, Jonsdottir AB, Rajendra E, Lee M, Sundaramoorthy E, Schlachter S, Kaminski CF, et al. A cancer-associated BRCA2 mutation reveals masked nuclear export signals controlling localization. Nat Struct Mol Biol 2013; 20:1191-8; PMID:24013206; http://dx.doi.org/10.1038/nsmb.2666
  • Zhao W, Vaithiyalingam S, San Filippo J, Maranon DG, Jimenez-Sainz J, Fontenay GV, Kwon Y, Leung SG, Lu L, Jensen RB, et al. Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry. Mol Cell 2015; 59:176-87; PMID:26145171; http://dx.doi.org/10.1016/j.molcel.2015.05.032
  • Gudmundsdottir K, Lord CJ, Witt E, Tutt ANJ, Ashworth A. DSS1 is required for RAD51 focus formation and genomic stability in mammalian cells. EMBO Rep 2004; 5:989-93; PMID:15359272; http://dx.doi.org/10.1038/sj.embor.7400255
  • Kojic M, Yang H, Kostrub CF, Pavletich NP, Holloman WK. The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell 2003; 12:1043-9; PMID:14580353; http://dx.doi.org/10.1016/S1097-2765(03)00367-8
  • Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature 2002; 420:287-93; PMID:12442171; http://dx.doi.org/10.1038/nature01230
  • Chen CF, Chen PL, Zhong Q, Sharp ZD, Lee WH. Expression of BRC repeats in breast cancer cells disrupts the BRCA2-Rad51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control. J Biol Chem 1999; 274:32931-5; PMID:10551859; http://dx.doi.org/10.1074/jbc.274.46.32931
  • Abe T, Branzei D. High levels of BRC4 induced by a Tet-On 3G system suppress DNA repair and impair cell proliferation in vertebrate cells. DNA Repair 2014; 22:153-64; PMID:25218467; http://dx.doi.org/10.1016/j.dnarep.2014.08.003
  • Magwood AC, Mundia MM, Baker MD. High Levels of Wild-Type BRCA2 Suppress Homologous Recombination. J Mol Biol 2012; 421:38-53; PMID:22579622; http://dx.doi.org/10.1016/j.jmb.2012.05.007
  • Ayoub N, Rajendra E, Su X, Jeyasekharan AD, Mahen R, Venkitaraman AR. The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry. Curr Biol 2009; 19:1075-85; PMID:19540122; http://dx.doi.org/10.1016/j.cub.2009.05.057
  • Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 2006; 22:719-29; PMID:16793542; http://dx.doi.org/10.1016/j.molcel.2006.05.022
  • Oliver A, Oliver AW, Swift S, Swift S, Lord CJ, Ashworth A, Pearl LH, Pearl L. Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep 2009; 10:990-6; PMID:19609323; http://dx.doi.org/10.1038/embor.2009.126
  • Buisson R, Dion-Côté A-M, Coulombe Y, Launay H, Cai H, Stasiak AZ, Stasiak A, Xia B, Masson J-Y. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 2010; 17:1247-54; PMID:20871615; http://dx.doi.org/10.1038/nsmb.1915
  • Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B, Yu X. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 2009; 19:524-9; PMID:19268590; http://dx.doi.org/10.1016/j.cub.2009.02.018
  • Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, Lee A, Subramanian D, De Leeneer K, Fostira F, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 2014; 371:497-506; PMID:25099575; http://dx.doi.org/10.1056/NEJMoa1400382
  • Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer 2011; 11:467-80; PMID:21701511; http://dx.doi.org/10.1038/nrc3088
  • Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002; 297:606-9; PMID:12065746; http://dx.doi.org/10.1126/science.1073834
  • Cipak L, Watanabe N, Bessho T. The role of BRCA2 in replication-coupled DNA interstrand cross-link repair in vitro. Nat Struct Mol Biol 2006; 13:729-33; PMID:16845393; http://dx.doi.org/10.1038/nsmb1120
  • Adamo A, Collis SJ, Adelman CA, Silva N, Horejsí Z, Ward JD, Martinez-Perez E, Boulton SJ, La Volpe A. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell 2010; 39:25-35; PMID:20598602; http://dx.doi.org/10.1016/j.molcel.2010.06.026
  • Chapman JR, Taylor MRG, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012; 47:497-510; PMID:22920291; http://dx.doi.org/10.1016/j.molcel.2012.07.029
  • Kim H, D'Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 2012; 26:1393-408; PMID:22751496; http://dx.doi.org/10.1101/gad.195248.112
  • Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, Colledge WH, Friedman LS, Ponder BA, Venkitaraman AR. Involvement of Brca2 in DNA repair. Mol Cell 1998; 1:347-57; PMID:9660919; http://dx.doi.org/10.1016/S1097-2765(00)80035-0
  • Lomonosov M, Anand S, Sangrithi M, Davies R, Venkitaraman AR. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev 2003; 17:3017-22; PMID:14681210; http://dx.doi.org/10.1101/gad.279003
  • Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-Strand Break Repair-Independent Role for BRCA2 in Blocking Stalled Replication Fork Degradation by MRE11. Cell 2011; 145:529-42; PMID:21565612; http://dx.doi.org/10.1016/j.cell.2011.03.041
  • Schlacher K, Wu H, Jasin M. A Distinct Replication Fork Protection Pathway Connects Fanconi Anemia Tumor Suppressors to RAD51-BRCA1/2. Cancer Cell 2012; 22:106-16; PMID:22789542; http://dx.doi.org/10.1016/j.ccr.2012.05.015
  • Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair 2008; 7:686-93; PMID:18243065; http://dx.doi.org/10.1016/j.dnarep.2007.12.008
  • Buisson R, Niraj J, Pauty J, Maity R, Zhao W, Coulombe Y, Sung P, Masson J-Y. Breast cancer proteins PALB2 and BRCA2 stimulate polymerase η in recombination-associated DNA synthesis at blocked replication forks. CellReports 2014; 6:553-64
  • Raghunandan M, Chaudhury I, Kelich SL, Hanenberg H, Sobeck A. FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex. Cell Cycle 2015; 14:342-53; PMID:25659033; http://dx.doi.org/10.4161/15384101.2014.987614
  • Min J, Choi ES, Hwang K, Kim J, Sampath S, Venkitaraman AR, Lee H. The breast cancer susceptibility gene BRCA2 is required for the maintenance of telomere homeostasis. J Biol Chem 2012; 287:5091-101; PMID:22187435; http://dx.doi.org/10.1074/jbc.M111.278994
  • Badie S, Escandell JM, Bouwman P, Carlos AR, Thanasoula M, Gallardo MM, Suram A, Jaco I, Benítez J, Herbig U, et al. BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping. Nat Struct Mol Biol 2010; 17:1461-9; PMID:21076401; http://dx.doi.org/10.1038/nsmb.1943
  • Aguilera A, García-Muse T. R Loops: From Transcription Byproducts to Threats to Genome Stability. Mol Cell 2012; 46:115-24; PMID:22541554; http://dx.doi.org/10.1016/j.molcel.2012.04.009
  • Skourti-Stathaki K, Proudfoot NJ, Gromak N. Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination. Mol Cell 2011; 42:794-805; PMID:21700224; http://dx.doi.org/10.1016/j.molcel.2011.04.026
  • Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 2014; 511:362-5; PMID:24896180; http://dx.doi.org/10.1038/nature13374
  • Menzel T, Nähse-Kumpf V, Kousholt AN, Klein DK, Lund-Andersen C, Lees M, Johansen JV, Syljuåsen RG, Sørensen CS. A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance. EMBO Rep 2011; 12:705-12; PMID:21637299; http://dx.doi.org/10.1038/embor.2011.99
  • Fuks F, Milner J, Kouzarides T. BRCA2 associates with acetyltransferase activity when bound to P/CAF. Oncogene 1998; 17:2531-4; PMID:9824164; http://dx.doi.org/10.1038/sj.onc.1202475
  • Lin H-R, Ting NSY, Qin J, Lee W-H. M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex. J Biol Chem 2003; 278:35979-87; PMID:12815053; http://dx.doi.org/10.1074/jbc.M210659200
  • Choi E, Park P-G, Lee H-O, Lee Y-K, Kang GH, Lee JW, Han W, Lee HC, Noh D-Y, Lekomtsev S, et al. BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Developmental Cell 2012; 22:295-308; PMID:22340495; http://dx.doi.org/10.1016/j.devcel.2012.01.009
  • Lekomtsev S, Guizetti J, Pozniakovsky A, Gerlich DW, Petronczki M. Evidence that the tumor-suppressor protein BRCA2 does not regulate cytokinesis in human cells. J Cell Sci 2010; 123:1395-400; PMID:20356927; http://dx.doi.org/10.1242/jcs.068015
  • Daniels MJ, Wang Y, Lee M, Venkitaraman AR. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 2004; 306:876-9; PMID:15375219; http://dx.doi.org/10.1126/science.1102574
  • Mondal G, Rowley M, Guidugli L, Wu J, Pankratz VS, Couch FJ. BRCA2 localization to the midbody by filamin A regulates cep55 signaling and completion of cytokinesis. Developmental Cell 2012; 23:137-52; PMID:22771033; http://dx.doi.org/10.1016/j.devcel.2012.05.008
  • Takaoka M, Saito H, Takenaka K, Miki Y, Nakanishi A. BRCA2 phosphorylated by PLK1 moves to the midbody to regulate cytokinesis mediated by nonmuscle myosin IIC. Cancer Res 2014; 74:1518-28; PMID:24448238; http://dx.doi.org/10.1158/0008-5472.CAN-13-0504
  • Lee M, Daniels MJ, Garnett MJ, Venkitaraman AR. A mitotic function for the high-mobility group protein HMG20b regulated by its interaction with the BRC repeats of the BRCA2 tumor suppressor. Oncogene 2011; 30:3360-9; PMID:21399666; http://dx.doi.org/10.1038/onc.2011.55
  • Evers B, Drost R, Schut E, de Bruin M, van der Burg E, Derksen PWB, Holstege H, Liu X, van Drunen E, Beverloo HB, et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 2008; 14:3916-25; PMID:18559613; http://dx.doi.org/10.1158/1078-0432.CCR-07-4953
  • Milner J, Ponder B, Hughes-Davies L, Seltmann M, Kouzarides T. Transcriptional activation functions in BRCA2. Nature 1997; 386:772-3; PMID:9126734; http://dx.doi.org/10.1038/386772a0
  • Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin S-F, Milner J, Brown LA, Hsu F, Gilks B, et al. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 2003; 115:523-35; PMID:14651845; http://dx.doi.org/10.1016/S0092-8674(03)00930-9
  • Shin S, Verma IM. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc Natl Acad Sci USA 2003; 100:7201-6; PMID:12756300; http://dx.doi.org/10.1073/pnas.1132020100
  • Rajagopalan S, Andreeva A, Rutherford TJ, Fersht AR. Mapping the physical and functional interactions between the tumor suppressors p53 and BRCA2. Proc Natl Acad Sci USA 2010; 107:8587-92; PMID:20421506; http://dx.doi.org/10.1073/pnas.1003689107
  • Pefani D-E, Latusek R, Pires I, Grawenda AM, Yee KS, Hamilton G, van der Weyden L, Esashi F, Hammond EM, O'Neill E. RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat Cell Biol 2014; 16:962-8; PMID:25218637; http://dx.doi.org/10.1038/ncb3035
  • Yata K, Bleuyard J-Y, Nakato R, Ralf C, Katou Y, Schwab RA, Niedzwiedz W, Shirahige K, Esashi F. BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability. CellReports 2014; 7:1547-59
  • Spain BH, Larson CJ, Shihabuddin LS, Gage FH, Verma IM. Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad Sci USA 1999; 96:13920-5; PMID:10570174; http://dx.doi.org/10.1073/pnas.96.24.13920
  • Han X, Saito H, Miki Y, Nakanishi A. A CRM1-mediated nuclear export signal governs cytoplasmic localization of BRCA2 and is essential for centrosomal localization of BRCA2. Oncogene 2008; 27:2969-77; PMID:18059333; http://dx.doi.org/10.1038/sj.onc.1210968
  • Zhou Q, Kojic M, Cao Z, Lisby M, Mazloum NA, Holloman WK. Dss1 interaction with Brh2 as a regulatory mechanism for recombinational repair. Mol Cell Biol 2007; 27:2512-26; PMID:17261595; http://dx.doi.org/10.1128/MCB.01907-06
  • Shahid T, Soroka J, Kong EH, Malivert L, McIlwraith MJ, Pape T, West SC, Zhang X. Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor. Nat Struct Mol Biol 2014; 21(11):962-8; PMID:24389540
  • Spurdle AB, Healey S, Devereau A, Hogervorst FBL, Monteiro ANA, Nathanson KL, Radice P, Stoppa-Lyonnet D, Tavtigian S, Wappenschmidt B, et al. ENIGMA-Evidence-based network for the interpretation of germline mutant alleles: An international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat 2011; 33:2-7; PMID:21990146; http://dx.doi.org/10.1002/humu.21628
  • Guidugli L, Carreira A, Caputo SM, Ehlen A, Galli A, Monteiro ANA, Neuhausen SL, Hansen TVO, Couch FJ, Vreeswijk MPG. Functional assays for analysis of variants of uncertain significance in BRCA2. Hum Mutat 2014; 35:151-64; PMID:24323938; http://dx.doi.org/10.1002/humu.22478
  • Guidugli L, Pankratz VS, Singh N, Thompson J, Erding CA, Engel C, Schmutzler R, Domchek S, Nathanson K, Radice P, et al. A classification model for BRCA2 DNA binding domain missense variants based on homology-directed repair activity. Cancer Res 2013; 73:265-75; PMID:23108138; http://dx.doi.org/10.1158/0008-5472.CAN-12-2081
  • Plon SE, Eccles DM, Easton DF, Foulkes WD, Genuardi M, Greenblatt MS, Hogervorst FBL, Hoogerbrugge N, Spurdle AB, Tavtigian SV, et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 2008; 29:1282-91; PMID:18951446; http://dx.doi.org/10.1002/humu.20880
  • Siaud N, Barbera MA, Egashira A, Lam I, Christ N, Schlacher K, Xia B, Jasin M. Plasticity of BRCA2 Function in Homologous Recombination: Genetic Interactions of the PALB2 and DNA Binding Domains. PLoS Genet 2011; 7:e1002409; PMID:22194698; http://dx.doi.org/10.1371/journal.pgen.1002409
  • Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Reis-Filho JS, Ashworth A. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 2008; 451:1111-5; PMID:18264088; http://dx.doi.org/10.1038/nature06548
  • Biswas K, Das R, Eggington JM, Qiao H, North SL, Stauffer S, Burkett SS, Martin BK, Southon E, Sizemore SC, et al. Functional evaluation of BRCA2 variants mapping to the PALB2-binding and C-terminal DNA-binding domains using a mouse ES cell-based assay. Hum Mol Genet 2012; 21:3993-4006; PMID:22678057; http://dx.doi.org/10.1093/hmg/dds222
  • Muller D, Rouleau E, Schultz I, Caputo S, Lefol C, Bièche I, Caron O, Nogues C, Limacher JM, Demange L, et al. An entire exon 3 germ-line rearrangement in the BRCA2 gene: pathogenic relevance of exon 3 deletion in breast cancer predisposition. 2011; 12:121; PMID:21939546

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.