8,700
Views
125
CrossRef citations to date
0
Altmetric
Review

Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors

, , , , , , & show all
Pages 25-40 | Received 23 Sep 2015, Accepted 12 Nov 2015, Published online: 15 Jan 2016

References

  • Daeron M, Latour S, Malbec O, Espinosa E, Pina P, Pasmans S, Fridman WH. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 1995; 3:635-46; PMID:7584153; http://dx.doi.org/10.1016/1074-7613(95)90134-5
  • Staub E, Rosenthal A, Hinzmann B. Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal 2004; 16:435-56; PMID:14709333; http://dx.doi.org/10.1016/j.cellsig.2003.08.013
  • Takai T, Nakamura A, Endo S. Role of PIR-B in autoimmune glomerulonephritis. J Biomed Biotechnol 2011; 2011:275302; PMID:20976309; http://dx.doi.org/10.1155/2011/275302
  • Daeron M, Jaeger S, Du Pasquier L, Vivier E. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev 2008; 224:11-43; PMID:18759918; http://dx.doi.org/10.1111/j.1600-065X.2008.00666.x
  • Katz HR. Inhibition of inflammatory responses by leukocyte Ig-like receptors. Adv Immunol 2006; 91:251-72; PMID:16938543; http://dx.doi.org/10.1016/S0065-2776(06)91007-4
  • Bruhns P, Vely F, Malbec O, Fridman WH, Vivier E, Daeron M. Molecular basis of the recruitment of the SH2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 by fcgamma RIIB. J Biol Chem 2000; 275:37357-64; PMID:11016922; http://dx.doi.org/10.1074/jbc.M003518200
  • Huang ZY, Hunter S, Kim MK, Indik ZK, Schreiber AD. The effect of phosphatases SHP-1 and SHIP-1 on signaling by the ITIM- and ITAM-containing Fcgamma receptors FcgammaRIIB and FcgammaRIIA. J Leukocyte Biol 2003; 73:823-9; PMID:12773515; http://dx.doi.org/10.1189/jlb.0902454
  • Binstadt BA, Brumbaugh KM, Dick CJ, Scharenberg AM, Williams BL, Colonna M, Lanier LL, Kinet JP, Abraham RT, Leibson PJ. Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 1996; 5:629-38; PMID:8986721; http://dx.doi.org/10.1016/S1074-7613(00)80276-9
  • Daigle I, Yousefi S, Colonna M, Green DR, Simon HU. Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med 2002; 8:61-7; PMID:11786908; http://dx.doi.org/10.1038/nm0102-61
  • Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol 2003; 23:6291-9; PMID:12917349; http://dx.doi.org/10.1128/MCB.23.17.6291-6299.2003
  • Ivashkiv LB. Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol 2009; 10:340-7; PMID:19295630; http://dx.doi.org/10.1038/ni.1706
  • Borges L, Hsu ML, Fanger N, Kubin M, Cosman D. A family of human lymphoid and myeloid Ig-like receptors, some of which bind to MHC class I molecules. J Immunol (Baltimore, Md : 1950) 1997; 159:5192-6; PMID:9548455
  • Colonna M, Navarro F, Bellon T, Llano M, Garcia P, Samaridis J, Angman L, Cella M, Lopez-Botet M. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 1997; 186:1809-18; PMID:9382880; http://dx.doi.org/10.1084/jem.186.11.1809
  • Cella M, Dohring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, Colonna M. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med 1997; 185:1743-51; PMID:9151699; http://dx.doi.org/10.1084/jem.185.10.1743
  • Samaridis J, Colonna M. Cloning of novel immunoglobulin superfamily receptors expressed on human myeloid and lymphoid cells: structural evidence for new stimulatory and inhibitory pathways. Eur J Immunol 1997; 27:660-5; PMID:9079806; http://dx.doi.org/10.1002/eji.1830270313
  • Martin AM, Kulski JK, Witt C, Pontarotti P, Christiansen FT. Leukocyte Ig-like receptor complex (LRC) in mice and men. Trend Immunol 2002; 23:81-8; PMID:11929131; http://dx.doi.org/10.1016/S1471-4906(01)02155-X
  • Wende H, Colonna M, Ziegler A, Volz A. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.4. Mammalian Gen 1999; 10:154-60; PMID:9922396; http://dx.doi.org/10.1007/s003359900961
  • Kubagawa H, Burrows PD, Cooper MD. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci U S A 1997; 94:5261-6; PMID:9144225; http://dx.doi.org/10.1073/pnas.94.10.5261
  • Katz HR, Vivier E, Castells MC, McCormick MJ, Chambers JM, Austen KF. Mouse mast cell gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs and suppresses mast cell activation when coligated with the high-affinity Fc receptor for IgE. Proc Natl Acad Sci U S A 1996; 93:10809-14; PMID:8855262; http://dx.doi.org/10.1073/pnas.93.20.10809
  • Mori Y, Tsuji S, Inui M, Sakamoto Y, Endo S, Ito Y, Fujimura S, Koga T, Nakamura A, Takayanagi H, et al. Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J Immunol 2008; 181:4742-51; PMID:18802077; http://dx.doi.org/10.4049/jimmunol.181.7.4742
  • Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C, Hyunh H, Kang X, Silvany R, Wan X, et al. Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 2012; 485:656-60; PMID:22660330; http://dx.doi.org/10.1038/nature11095
  • Deng M, Lu Z, Zheng J, Wan X, Chen X, Hirayasu K, Sun H, Lam Y, Chen L, Wang Q, et al. A motif in LILRB2 critical for Angptl2 binding and activation. Blood 2014; 124:924-35; PMID:24899623; http://dx.doi.org/10.1182/blood-2014-01-549162
  • Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 2008; 322:967-70; PMID:18988857; http://dx.doi.org/10.1126/science.1161151
  • Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, Hyman BT, Shatz CJ. Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer's model. Science 2013; 341:1399-404; PMID:24052308; http://dx.doi.org/10.1126/science.1242077
  • Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161:205-14; PMID:25860605; http://dx.doi.org/10.1016/j.cell.2015.03.030
  • Carosella ED, Rouas-Freiss N, Roux DT, Moreau P, LeMaoult J. HLA-G: An Immune Checkpoint Molecule. Adv Immunol 2015; 127:33-144; PMID:26073983; http://dx.doi.org/10.1016/bs.ai.2015.04.001
  • Olde Nordkamp MJ, van Eijk M, Urbanus RT, Bont L, Haagsman HP, Meyaard L. Leukocyte-associated Ig-like receptor-1 is a novel inhibitory receptor for surfactant protein D. J Leukoc Biol 2014; 96:105-11; PMID:24585933; http://dx.doi.org/10.1189/jlb.3AB0213-092RR
  • Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH. LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity 1997; 7:283-90; PMID:9285412; http://dx.doi.org/10.1016/S1074-7613(00)80530-0
  • Poggi A, Pella N, Morelli L, Spada F, Revello V, Sivori S, Augugliaro R, Moretta L, Moretta A. p40, a novel surface molecule involved in the regulation of the non-major histocompatibility complex-restricted cytolytic activity in humans. Eur J Immunol 1995; 25:369-76; PMID:7875198; http://dx.doi.org/10.1002/eji.1830250210
  • Lebbink RJ, de Ruiter T, Adelmeijer J, Brenkman AB, van Helvoort JM, Koch M, Farndale RW, Lisman T, Sonnenberg A, Lenting PJ, et al. Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J Exp Med 2006; 203:1419-25; PMID:16754721; http://dx.doi.org/10.1084/jem.20052554
  • Kang X, Lu Z, Cui C, Deng M, Fan Y, Dong B, Han X, Xie F, Tyner JW, Coligan JE, et al. The ITIM-containing receptor LAIR1 is essential for acute myeloid leukaemia development. Nat Cell Biol 2015; 17:665-77; PMID:25915125; http://dx.doi.org/10.1038/ncb3158
  • Liu X, Yu X, Xie J, Zhan M, Yu Z, Xie L, Zeng H, Zhang F, Chen G, Yi X, et al. ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget 2015;
  • Wang L, Geng T, Guo X, Liu J, Zhang P, Yang D, Li J, Yu S, Sun Y. Co-expression of immunoglobulin-like transcript 4 and angiopoietin-like proteins in human non-small cell lung cancer. Mol Med Rep 2015; 11:2789-96; PMID:25482926
  • Zhang P, Yu S, Li H, Liu C, Li J, Lin W, Gao A, Wang L, Gao W, Sun Y. ILT4 drives B7-H3 expression via PI3K/AKT/mTOR signalling and ILT4/B7-H3 co-expression correlates with poor prognosis in non-small cell lung cancer. FEBS Lett 2015; 589:2248-56; PMID:26149216
  • Naji A, Menier C, Maki G, Carosella ED, Rouas-Freiss N. Neoplastic B-cell growth is impaired by HLA-G/ILT2 interaction. Leukemia 2012; 26:1889-92; PMID:22441169; http://dx.doi.org/10.1038/leu.2012.62
  • Harly C, Peyrat MA, Netzer S, Dechanet-Merville J, Bonneville M, Scotet E. Up-regulation of cytolytic functions of human Vdelta2-gamma T lymphocytes through engagement of ILT2 expressed by tumor target cells. Blood 2011; 117:2864-73; PMID:21233315; http://dx.doi.org/10.1182/blood-2010-09-309781
  • Urosevic M, Kamarashev J, Burg G, Dummer R. Primary cutaneous CD8+ and CD56+ T-cell lymphomas express HLA-G and killer-cell inhibitory ligand, ILT2. Blood 2004; 103:1796-8; PMID:14592815; http://dx.doi.org/10.1182/blood-2003-10-3372
  • Zhang Y, Lu N, Xue Y, Zhang M, Li Y, Si Y, Bian X, Jia Y, Wang Y. Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol Med Rep 2012; 5:910-6; PMID:22246571
  • Heidenreich S, Zu Eulenburg C, Hildebrandt Y, Stubig T, Sierich H, Badbaran A, Eiermann TH, Binder TM, Kroger N. Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma. Clin Dev Immunol 2012; 2012:652130; PMID:22844324; http://dx.doi.org/10.1155/2012/652130
  • Colovai AI, Tsao L, Wang S, Lin H, Wang C, Seki T, Fisher JG, Menes M, Bhagat G, Alobeid B, et al. Expression of inhibitory receptor ILT3 on neoplastic B cells is associated with lymphoid tissue involvement in chronic lymphocytic leukemia. Cytometry B Clin Cytom 2007; 72:354-62; PMID:17266150; http://dx.doi.org/10.1002/cyto.b.20164
  • Liu J, Wang L, Gao W, Li L, Cui X, Yang H, Lin W, Dang Q, Zhang N, Sun Y. Inhibitory receptor immunoglobulin-like transcript 4 was highly expressed in primary ductal and lobular breast cancer and significantly correlated with IL-10. Diagn Pathol 2014; 9:85; PMID:24762057; http://dx.doi.org/10.1186/1746-1596-9-85
  • Sun Y, Liu J, Gao P, Wang Y, Liu C. Expression of Ig-like transcript 4 inhibitory receptor in human non-small cell lung cancer. Chest 2008; 134:783-8; PMID:18625675; http://dx.doi.org/10.1378/chest.07-1100
  • Pfistershammer K, Lawitschka A, Klauser C, Leitner J, Weigl R, Heemskerk MH, Pickl WF, Majdic O, Bohmig GA, Fischer GF, et al. Allogeneic disparities in immunoglobulin-like transcript 5 induce potent antibody responses in hematopoietic stem cell transplant recipients. Blood 2009; 114:2323-32; PMID:19617579; http://dx.doi.org/10.1182/blood-2008-10-183814
  • Suciu-Foca N, Feirt N, Zhang QY, Vlad G, Liu Z, Lin H, Chang CC, Ho EK, Colovai AI, Kaufman H, et al. Soluble Ig-like transcript 3 inhibits tumor allograft rejection in humanized SCID mice and T cell responses in cancer patients. J Immunol 2007; 178:7432-41; PMID:17513794; http://dx.doi.org/10.4049/jimmunol.178.11.7432
  • Cortesini R. Pancreas cancer and the role of soluble immunoglobulin-like transcript 3 (ILT3). JOP 2007; 8:697-703; PMID:17993722
  • Chen Z, Shojaee S, Buchner M, Geng H, Lee JW, Klemm L, Titz B, Graeber TG, Park E, Tan YX, et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature 2015; 521:357-61; PMID:25799995; http://dx.doi.org/10.1038/nature14231
  • Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA, Takai T, Chen SH. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 2011; 34:385-95; PMID:21376641; http://dx.doi.org/10.1016/j.immuni.2011.02.004
  • Hirayasu K, Arase H. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J Hum Gen 2015; PMID:26040207
  • Barrow AD, Trowsdale J. The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol Rev 2008; 224:98-123; PMID:18759923; http://dx.doi.org/10.1111/j.1600-065X.2008.00653.x
  • Trowsdale J, Jones DC, Barrow AD, Traherne JA. Surveillance of cell and tissue perturbation by receptors in the LRC. Immunol Rev 2015; 267:117-36; PMID:26284474; http://dx.doi.org/10.1111/imr.12314
  • Willcox BE, Thomas LM, Bjorkman PJ. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol 2003; 4:913-9; PMID:12897781; http://dx.doi.org/10.1038/ni961
  • Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O'Callaghan CA, Dunbar R, Ogg GS, Cerundolo V, Rolink A. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol (Baltimore, Md : 1950) 1998; 160:3096-100; PMID:9531263
  • Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM, Allan DS, Makadzange A, Rowland-Jones S, Willcox B, et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci U S A 2003; 100:8856-61; PMID:12853576; http://dx.doi.org/10.1073/pnas.1431057100
  • Zhang Z, Hatano H, Shaw J, Olde Nordkamp M, Jiang G, Li D, Kollnberger S. The Leukocyte Immunoglobulin-Like Receptor Family Member LILRB5 Binds to HLA-Class I Heavy Chains. PLoS One 2015; 10:e0129063; PMID:26098415; http://dx.doi.org/10.1371/journal.pone.0129063
  • Fridman WH. Fc receptors and immunoglobulin binding factors. FASEB J 1991; 5:2684-90; PMID:1916092
  • Li D, Wang L, Yu L, Freundt EC, Jin B, Screaton GR, Xu XN. Ig-like transcript 4 inhibits lipid antigen presentation through direct CD1d interaction. J Immunol 2009; 182:1033-40; PMID:19124746; http://dx.doi.org/10.4049/jimmunol.182.2.1033
  • Arnold V, Cummings JS, Moreno-Nieves UY, Didier C, Gilbert A, Barre-Sinoussi F, Scott-Algara D. S100A9 protein is a novel ligand for the CD85j receptor and its interaction is implicated in the control of HIV-1 replication by NK cells. Retrovirology 2013; 10:122; PMID:24156302; http://dx.doi.org/10.1186/1742-4690-10-122
  • Torii I, Oka S, Hotomi M, Benjamin WH, Jr., Takai T, Kearney JF, Briles DE, Kubagawa H. PIR-B-deficient mice are susceptible to Salmonella infection. J Immunol 2008; 181:4229-39; http://dx.doi.org/10.4049/jimmunol.181.6.4229
  • Takai T. Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 2005; 115:433-40; PMID:16011512; http://dx.doi.org/10.1111/j.1365-2567.2005.02177.x
  • Castells MC, Klickstein LB, Hassani K, Cumplido JA, Lacouture ME, Austen KF, Katz HR. gp49B1-alpha(v)beta3 interaction inhibits antigen-induced mast cell activation. Nat Immunol 2001; 2:436-42; PMID:11323698
  • Dobrowolska H, Gill KZ, Serban G, Ivan E, Li Q, Qiao P, Suciu-Foca N, Savage D, Alobeid B, Bhagat G, et al. Expression of immune inhibitory receptor ILT3 in acute myeloid leukemia with monocytic differentiation. Cytometry B Clin Cytom 2013; 84:21-9; PMID:23027709; http://dx.doi.org/10.1002/cyto.b.21050
  • Blery M, Kubagawa H, Chen CC, Vely F, Cooper MD, Vivier E. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci U S A 1998; 95:2446-51; PMID:9482905; http://dx.doi.org/10.1073/pnas.95.5.2446
  • Rojo S, Stebbins CC, Peterson ME, Dombrowicz D, Wagtmann N, Long EO. Natural killer cells and mast cells from gp49B null mutant mice are functional. Mol Cell Biol 2000; 20:7178-82; PMID:10982834; http://dx.doi.org/10.1128/MCB.20.19.7178-7182.2000
  • Mitsuhashi Y, Nakamura A, Endo S, Takeda K, Yabe-Wada T, Nukiwa T, Takai T. Regulation of plasmacytoid dendritic cell responses by PIR-B. Blood 2012; 120:3256-9; PMID:22948046; http://dx.doi.org/10.1182/blood-2012-03-419093
  • Tang X, Tian L, Esteso G, Choi SC, Barrow AD, Colonna M, Borrego F, Coligan JE. Leukocyte-associated Ig-like receptor-1-deficient mice have an altered immune cell phenotype. J Immunol 2012; 188:548-58; PMID:22156345; http://dx.doi.org/10.4049/jimmunol.1102044
  • Hunt JS, Petroff MG, Morales P, Sedlmayr P, Geraghty DE, Ober C. HLA-G in reproduction: studies on the maternal-fetal interface. Human immunology 2000; 61:1113-7; PMID:11137215; http://dx.doi.org/10.1016/S0198-8859(00)00195-6
  • Tedla N, Lee CW, Borges L, Geczy CL, Arm JP. Differential expression of leukocyte immunoglobulin-like receptors on cord-blood-derived human mast cell progenitors and mature mast cells. J Leukoc Biol 2008; 83:334-43; PMID:17998301; http://dx.doi.org/10.1189/jlb.0507314
  • Davidson CL, Li NL, Burshtyn DN. LILRB1 polymorphism and surface phenotypes of natural killer cells. Hum Immunol 2010; 71:942-9; PMID:20600445; http://dx.doi.org/10.1016/j.humimm.2010.06.015
  • Lamar DL, Weyand CM, Goronzy JJ. Promoter choice and translational repression determine cell type-specific cell surface density of the inhibitory receptor CD85j expressed on different hematopoietic lineages. Blood 2010; 115:3278-86; PMID:20194892; http://dx.doi.org/10.1182/blood-2009-09-243493
  • Lepin EJ, Bastin JM, Allan DS, Roncador G, Braud VM, Mason DY, van der Merwe PA, McMichael AJ, Bell JI, Powis SH, et al. Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors. Eur J Immunol 2000; 30:3552-61; PMID:11169396; http://dx.doi.org/10.1002/1521-4141(200012)30:12%3c3552::AID-IMMU3552%3e3.0.CO;2-L
  • Allan DS, Lepin EJ, Braud VM, O'Callaghan CA, McMichael AJ. Tetrameric complexes of HLA-E, HLA-F, and HLA-G. J Immun Methods 2002; 268:43-50; PMID:12213342; http://dx.doi.org/10.1016/S0022-1759(02)00199-0
  • Shiroishi M, Kuroki K, Ose T, Rasubala L, Shiratori I, Arase H, Tsumoto K, Kumagai I, Kohda D, Maenaka K. Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide-linked HLA-G dimer. J Biol Chem 2006; 281:10439-47; PMID:16455647; http://dx.doi.org/10.1074/jbc.M512305200
  • Chapman TL, Heikeman AP, Bjorkman PJ. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 1999; 11:603-13; PMID:10591185; http://dx.doi.org/10.1016/S1074-7613(00)80135-1
  • Chapman TL, Heikema AP, West AP, Jr., Bjorkman PJ. Crystal structure and ligand binding properties of the D1D2 region of the inhibitory receptor LIR-1 (ILT2). Immunity 2000; 13:727-36; PMID:11114384; http://dx.doi.org/10.1016/S1074-7613(00)00071-6
  • Allen RL, Raine T, Haude A, Trowsdale J, Wilson MJ. Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J Immunol 2001; 167:5543-7; http://dx.doi.org/10.4049/jimmunol.167.10.5543
  • Vitale M, Castriconi R, Parolini S, Pende D, Hsu ML, Moretta L, Cosman D, Moretta A. The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: analysis of LIR-1 + NK cell clones. Inter Immunol 1999; 11:29-35; PMID:10050671; http://dx.doi.org/10.1093/intimm/11.1.29
  • Navarro F, Llano M, Bellon T, Colonna M, Geraghty DE, Lopez-Botet M. The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. Eur J Immunol 1999; 29:277-83; PMID:9933109; http://dx.doi.org/10.1002/(SICI)1521-4141(199901)29:01%3c277::AID-IMMU277%3e3.0.CO;2-4
  • Morel E, Bellón T. HLA class I molecules regulate IFN-γ production induced in NK cells by target cells, viral products, or immature dendritic cells through the inhibitory receptor ILT2/CD85j. J Immunol 2008; 181:2368-81; PMID:18684926; http://dx.doi.org/10.4049/jimmunol.181.4.2368
  • LeMaoult J, Zafaranloo K, Le Danff C, Carosella ED. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J 2005; 19:662-4; PMID:15670976
  • Favier B, Lemaoult J, Lesport E, Carosella ED. ILT2/HLA-G interaction impairs NK-cell functions through the inhibition of the late but not the early events of the NK-cell activating synapse. FASEB J 2010; 24:689-99; PMID:19841038; http://dx.doi.org/10.1096/fj.09-135194
  • Ponte M, Cantoni C, Biassoni R, Tradori-Cappai A, Bentivoglio G, Vitale C, Bertone S, Moretta A, Moretta L, Mingari MC. Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proc Natl Acad Sci U S A 1999; 96:5674-9; PMID:10318943; http://dx.doi.org/10.1073/pnas.96.10.5674
  • Petroff MG, Sedlmayr P, Azzola D, Hunt JS. Decidual macrophages are potentially susceptible to inhibition by class Ia and class Ib HLA molecules. J Reproduct Immunol 2002; 56:3-17; PMID:12106880; http://dx.doi.org/10.1016/S0165-0378(02)00024-4
  • Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, Goncalves A, Andre P, Romagne F, Thibault G, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 2011; 121:3609-22; PMID:21841316; http://dx.doi.org/10.1172/JCI45816
  • Roberti MP, Juliá EP, Rocca YS, Amat M, Bravo AI, Loza J, Coló F, Loza CM, Fabiano V, Maino M. Overexpression of CD85j in TNBC patients inhibits Cetuximab-mediated NK-cell ADCC but can be restored with CD85j functional blockade. Eur J Immunol 2015; 45:1560-9; PMID:25726929; http://dx.doi.org/10.1002/eji.201445353
  • Kirwan SE, Burshtyn DN. Killer cell Ig-like receptor-dependent signaling by Ig-like transcript 2 (ILT2/CD85j/LILRB1/LIR-1). J Immunol 2005; 175:5006-15; http://dx.doi.org/10.4049/jimmunol.175.8.5006
  • Godal R, Bachanova V, Gleason M, McCullar V, Yun GH, Cooley S, Verneris MR, McGlave PB, Miller JS. Natural killer cell killing of acute myelogenous leukemia and acute lymphoblastic leukemia blasts by killer cell immunoglobulin-like receptor-negative natural killer cells after NKG2A and LIR-1 blockade. Biol Blood Marrow Trans 2010; 16:612-21; PMID:20139023; http://dx.doi.org/10.1016/j.bbmt.2010.01.019
  • Li C, Houser BL, Nicotra ML, Strominger JL. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc Natl Acad Sci U S A 2009; 106:5767-72; PMID:19304799; http://dx.doi.org/10.1073/pnas.0901173106
  • Scott-Algara D, Arnold V, Didier C, Kattan T, Pirozzi G, Barre-Sinoussi F, Pancino G. The CD85j+ NK cell subset potently controls HIV-1 replication in autologous dendritic cells. PloS one 2008; 3:e1975; PMID:18398485; http://dx.doi.org/10.1371/journal.pone.0001975
  • Fanger NA, Cosman D, Peterson L, Braddy SC, Maliszewski CR, Borges L. The MHC class I binding proteins LIR-1 and LIR-2 inhibit Fc receptor-mediated signaling in monocytes. Eur J Immunol 1998; 28:3423-34; PMID:9842885; http://dx.doi.org/10.1002/(SICI)1521-4141(199811)28:11%3c3423::AID-IMMU3423%3e3.0.CO;2-2
  • Lombardelli L, Aguerre-Girr M, Logiodice F, Kullolli O, Casart Y, Polgar B, Berrebi A, Romagnani S, Maggi E, Le Bouteiller P. HLA-G5 induces IL-4 secretion critical for successful pregnancy through differential expression of ILT2 receptor on decidual CD4+ T cells and macrophages. J Immunol 2013; 191:3651-62; PMID:23997222; http://dx.doi.org/10.4049/jimmunol.1300567
  • Lefebvre S, Antoine M, Uzan S, McMaster M, Dausset J, Carosella ED, Paul P. Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J Pathol 2002; 196:266-74; PMID:11857488; http://dx.doi.org/10.1002/path.1039
  • Ju XS, Hacker C, Scherer B, Redecke V, Berger T, Schuler G, Wagner H, Lipford GB, Zenke M. Immunoglobulin-like transcripts ILT2, ILT3 and ILT7 are expressed by human dendritic cells and down-regulated following activation. Gene 2004; 331:159-64; PMID:15094202; http://dx.doi.org/10.1016/j.gene.2004.02.018
  • Young NT, Waller EC, Patel R, Roghanian A, Austyn JM, Trowsdale J. The inhibitory receptor LILRB1 modulates the differentiation and regulatory potential of human dendritic cells. Blood 2008; 111:3090-6; PMID:18094328; http://dx.doi.org/10.1182/blood-2007-05-089771
  • Fedoric B, Krishnan R. Rapamycin downregulates the inhibitory receptors ILT2, ILT3, ILT4 on human dendritic cells and yet induces T cell hyporesponsiveness independent of FoxP3 induction. Immunol Lett 2008; 120:49-56; PMID:18652845; http://dx.doi.org/10.1016/j.imlet.2008.06.009
  • Tenca C, Merlo A, Merck E, Bates EE, Saverino D, Simone R, Zarcone D, Trinchieri G, Grossi CE, Ciccone E. CD85j (leukocyte Ig-like receptor-1/Ig-like transcript 2) inhibits human osteoclast-associated receptor-mediated activation of human dendritic cells. J Immunol 2005; 174:6757-63; http://dx.doi.org/10.4049/jimmunol.174.11.6757
  • Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol 2007; 37:1924-37; PMID:17549736; http://dx.doi.org/10.1002/eji.200737089
  • Monsivais-Urenda A, Gomez-Martin D, Santana-de-Anda K, Cruz-Martinez J, Alcocer-Varela J, Gonzalez-Amaro R. Defective expression and function of the ILT2/CD85j regulatory receptor in dendritic cells from patients with systemic lupus erythematosus. Hum Immunol 2013; 74:1088-96; PMID:23756160; http://dx.doi.org/10.1016/j.humimm.2013.05.006
  • Huang J, Burke PS, Cung TD, Pereyra F, Toth I, Walker BD, Borges L, Lichterfeld M, Yu XG. Leukocyte immunoglobulin-like receptors maintain unique antigen-presenting properties of circulating myeloid dendritic cells in HIV-1-infected elite controllers. J Virol 2010; 84:9463-71; PMID:20631139; http://dx.doi.org/10.1128/JVI.01009-10
  • Banham AH, Colonna M, Cella M, Micklem KJ, Pulford K, Willis AC, Mason DY. Identification of the CD85 antigen as ILT2, an inhibitory MHC class I receptor of the immunoglobulin superfamily. J Leukocyte Biol 1999; 65:841-5; PMID:10380908
  • Young NT, Uhrberg M, Phillips JH, Lanier LL, Parham P. Differential expression of leukocyte receptor complex-encoded Ig-like receptors correlates with the transition from effector to memory CTL. J Immunol 2001; 166:3933-41; http://dx.doi.org/10.4049/jimmunol.166.6.3933
  • Saverino D, Fabbi M, Ghiotto F, Merlo A, Bruno S, Zarcone D, Tenca C, Tiso M, Santoro G, Anastasi G, et al. The CD85/LIR-1/ILT2 inhibitory receptor is expressed by all human T lymphocytes and down-regulates their functions. J Immunol 2000; 165:3742-55; http://dx.doi.org/10.4049/jimmunol.165.7.3742
  • Ince MN, Harnisch B, Xu Z, Lee SK, Lange C, Moretta L, Lederman M, Lieberman J. Increased expression of the natural killer cell inhibitory receptor CD85j/ILT2 on antigen-specific effector CD8 T cells and its impact on CD8 T-cell function. Immunology 2004; 112:531-42; PMID:15270723; http://dx.doi.org/10.1046/j.1365-2567.2004.01907.x
  • Saverino D, Merlo A, Bruno S, Pistoia V, Grossi CE, Ciccone E. Dual effect of CD85/leukocyte Ig-like receptor-1/Ig-like transcript 2 and CD152 (CTLA-4) on cytokine production by antigen-stimulated human T cells. J Immunol (Baltimore, Md : 1950) 2002; 168:207-15; PMID:11751964; http://dx.doi.org/10.4049/jimmunol.168.1.207
  • Merlo A, Saverino D, Tenca C, Grossi CE, Bruno S, Ciccone E. CD85/LIR-1/ILT2 and CD152 (Cytotoxic T Lymphocyte Antigen 4) Inhibitory Molecules Down-Regulate the Cytolytic Activity of Human CD4+ T-Cell Clones Specific forMycobacterium tuberculosis. Infect Immun 2001; 69:6022-9; PMID:11553539; http://dx.doi.org/10.1128/IAI.69.10.6022-6029.2001
  • Dietrich J, Cella M, Colonna M. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. J Immunol 2001; 166:2514-21; PMID:11160312; http://dx.doi.org/10.4049/jimmunol.166.4.2514
  • Zhang W, Liang S, Wu J, Horuzsko A. Human Inhibitory Receptor ILT2 Amplifies CD11b+ Gr1+ Myeloid-Derived Suppressor Cells that Promote Long-Term Survival of Allografts. Transplantation 2008; 86:1125; PMID:18946352; http://dx.doi.org/10.1097/TP.0b013e318186fccd
  • Liang S, Zhang W, Horuzsko A. Human ILT2 receptor associates with murine MHC class I molecules in vivo and impairs T cell function. Eur J Immunol 2006; 36:2457-71; PMID:16897816; http://dx.doi.org/10.1002/eji.200636031
  • Lesport E, Baudhuin J, Sousa S, LeMaoult J, Zamborlini A, Rouas-Freiss N, Carosella ED, Favier B. Inhibition of human gamma delta [corrected] T-cell antitumoral activity through HLA-G: implications for immunotherapy of cancer. Cell Mol Life Sci 2011; 68:3385-99; PMID:21337044; http://dx.doi.org/10.1007/s00018-011-0632-7
  • Saverino D, Ghiotto F, Merlo A, Bruno S, Battini L, Occhino M, Maffei M, Tenca C, Pileri S, Baldi L, et al. Specific recognition of the viral protein UL18 by CD85j/LIR-1/ILT2 on CD8+ T cells mediates the non-MHC-restricted lysis of human cytomegalovirus-infected cells. J Immunol 2004; 172:5629-37; http://dx.doi.org/10.4049/jimmunol.172.9.5629
  • Wagner CS, Riise GC, Bergstrom T, Karre K, Carbone E, Berg L. Increased expression of leukocyte Ig-like receptor-1 and activating role of UL18 in the response to cytomegalovirus infection. J Immunol 2007; 178:3536-43; http://dx.doi.org/10.4049/jimmunol.178.6.3536
  • Merlo A, Tenca C, Fais F, Battini L, Ciccone E, Grossi CE, Saverino D. Inhibitory receptors CD85j, LAIR-1, and CD152 down-regulate immunoglobulin and cytokine production by human B lymphocytes. Clin Diagn Laborat Immunol 2005; 12:705-12; PMID:15939744
  • Naji A, Menier C, Morandi F, Agaugue S, Maki G, Ferretti E, Bruel S, Pistoia V, Carosella ED, Rouas-Freiss N. Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses. J Immunol 2014; 192:1536-46; http://dx.doi.org/10.4049/jimmunol.1300438
  • Kalmbach Y, Boldt AB, Fendel R, Mordmuller B, Kremsner PG, Kun JF. Increase in annexin V-positive B cells expressing LILRB1/ILT2/CD85j in malaria. Eur Cytokine Net 2006; 17:175-80; PMID:17194637
  • Manavalan JS, Kim-Schulze S, Scotto L, Naiyer AJ, Vlad G, Colombo PC, Marboe C, Mancini D, Cortesini R, Suciu-Foca N. Alloantigen specific CD8+CD28- FOXP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Inter Immunol 2004; 16:1055-68; PMID:15226269; http://dx.doi.org/10.1093/intimm/dxh107
  • Masuda A, Nakamura A, Maeda T, Sakamoto Y, Takai T. Cis binding between inhibitory receptors and MHC class I can regulate mast cell activation. J Exp Med 2007; 204:907-20; PMID:17420263; http://dx.doi.org/10.1084/jem.20060631
  • Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, Mancini D, Suciu-Foca N. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 2003; 11:245-58; PMID:12967778; http://dx.doi.org/10.1016/S0966-3274(03)00058-3
  • Bashirova AA, Martin-Gayo E, Jones DC, Qi Y, Apps R, Gao X, Burke PS, Taylor CJ, Rogich J, Wolinsky S, et al. LILRB2 interaction with HLA class I correlates with control of HIV-1 infection. PLoS genetics 2014; 10:e1004196; PMID:24603468; http://dx.doi.org/10.1371/journal.pgen.1004196
  • Brown DP, Jones DC, Anderson KJ, Lapaque N, Buerki RA, Trowsdale J, Allen RL. The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection. BMC Immunol 2009; 10:56; PMID:19860908; http://dx.doi.org/10.1186/1471-2172-10-56
  • Sloane DE, Tedla N, Awoniyi M, Macglashan DW, Jr., Borges L, Austen KF, Arm JP. Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition. Blood 2004; 104:2832-9; PMID:15242876; http://dx.doi.org/10.1182/blood-2004-01-0268
  • Arm JP, Nwankwo C, Austen KF. Molecular identification of a novel family of human Ig superfamily members that possess immunoreceptor tyrosine-based inhibition motifs and homology to the mouse gp49B1 inhibitory receptor. J Immunol 1997; 159:2342-9
  • Vlad G, Chang CC, Colovai AI, Berloco P, Cortesini R, Suciu-Foca N. Immunoglobulin-like transcript 3: A crucial regulator of dendritic cell function. Hum Immunol 2009; 70:340-4; PMID:19275918; http://dx.doi.org/10.1016/j.humimm.2009.03.004
  • Kim-Schulze S, Seki T, Vlad G, Scotto L, Fan J, Colombo PC, Liu J, Cortesini R, Suciu-Foca N. Regulation of ILT3 gene expression by processing of precursor transcripts in human endothelial cells. Am J Transplant 2006; 6:76-82; PMID:16433759; http://dx.doi.org/10.1111/j.1600-6143.2005.01162.x
  • Chang CC, Silvia EA, Ho EK, Vlad G, Suciu-Foca N, Vasilescu ER. Polymorphism and linkage disequilibrium of immunoglobulin-like transcript 3 g ene. Hum Immunol 2008; 69:284-90; PMID:18486764; http://dx.doi.org/10.1016/j.humimm.2008.02.004
  • Cheng H, Mohammed F, Nam G, Chen Y, Qi J, Garner LI, Allen RL, Yan J, Willcox BE, Gao GF. Crystal structure of leukocyte Ig-like receptor LILRB4 (ILT3/LIR-5/CD85k): a myeloid inhibitory receptor involved in immune tolerance. J Biol Chem 2011; 286:18013-25; PMID:21454581; http://dx.doi.org/10.1074/jbc.M111.221028
  • Waschbisch A, Sanderson N, Krumbholz M, Vlad G, Theil D, Schwab S, Maurer M, Derfuss T. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. PloS one 2014; 9:e115488; PMID:25551576; http://dx.doi.org/10.1371/journal.pone.0115488
  • Lu HK, Rentero C, Raftery MJ, Borges L, Bryant K, Tedla N. Leukocyte Ig-like receptor B4 (LILRB4) is a potent inhibitor of FcgammaRI-mediated monocyte activation via dephosphorylation of multiple kinases. J Biol Chem 2009; 284:34839-48; PMID:19833736; http://dx.doi.org/10.1074/jbc.M109.035683
  • Kim-Schulze S, Scotto L, Vlad G, Piazza F, Lin H, Liu Z, Cortesini R, Suciu-Foca N. Recombinant Ig-like transcript 3-Fc modulates T cell responses via induction of Th anergy and differentiation of CD8+ T suppressor cells. J Immunol 2006; 176:2790-8; PMID:16493035; http://dx.doi.org/10.4049/jimmunol.176.5.2790
  • Vlad G, D'Agati VD, Zhang QY, Liu Z, Ho EK, Mohanakumar T, Hardy MA, Cortesini R, Suciu-Foca N. Immunoglobulin-like transcript 3-Fc suppresses T-cell responses to allogeneic human islet transplants in hu-NOD/SCID mice. Diabetes 2008; 57:1878-86; PMID:18420485; http://dx.doi.org/10.2337/db08-0054
  • Vlad G, Stokes MB, Liu Z, Chang CC, Sondermeijer H, Vasilescu ER, Colovai AI, Berloco P, D'Agati VD, Ratner L, et al. Suppression of xenogeneic graft-versus-host disease by treatment with immunoglobulin-like transcript 3-Fc. Hum Immunol 2009; 70:663-9; PMID:19501624; http://dx.doi.org/10.1016/j.humimm.2009.06.001
  • Chang CC, Liu Z, Vlad G, Qin H, Qiao X, Mancini DM, Marboe CC, Cortesini R, Suciu-Foca N. Ig-like transcript 3 regulates expression of proinflammatory cytokines and migration of activated T cells. J Immunol 2009; 182:5208-16; http://dx.doi.org/10.4049/jimmunol.0804048
  • Chang CC, Vlad G, D'Agati VD, Liu Z, Zhang QY, Witkowski P, Torkamani AA, Stokes MB, Ho EK, Cortesini R, et al. BCL6 is required for differentiation of Ig-like transcript 3-Fc-induced CD8+ T suppressor cells. J Immunol 2010; 185:5714-22; http://dx.doi.org/10.4049/jimmunol.1001732
  • Ulges A, Klein M, Reuter S, Gerlitzki B, Hoffmann M, Grebe N, Staudt V, Stergiou N, Bohn T, Bruhl TJ, et al. Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nat Immunol 2015; 16:267-75; PMID:25599562; http://dx.doi.org/10.1038/ni.3083
  • de Goeje PL, Bezemer K, Heuvers ME, Dingemans AC, Groen HJ, Smit EF, Hoogsteden HC, Hendriks RW, Aerts JG, Hegmans JP. Immunoglobulin-like transcript 3 is expressed by myeloid-derived suppressor cells and correlates with survival in patients with non-small cell lung cancer. Oncoimmunology 2015; 4:e1014242; PMID:26140237; http://dx.doi.org/10.1080/2162402X.2015.1014242
  • Khan MF, Bahr JM, Yellapa A, Bitterman P, Abramowicz JS, Edassery SL, Basu S, Rotmensch J, Barua A. Expression of Leukocyte Inhibitory Immunoglobulin-like Transcript 3 Receptors by Ovarian Tumors in Laying Hen Model of Spontaneous Ovarian Cancer. Trans Oncol 2012; 5:85-91; PMID:22496924; http://dx.doi.org/10.1593/tlo.11328
  • Dube MP, Zetler R, Barhdadi A, Brown AM, Mongrain I, Normand V, Laplante N, Asselin G, Zada YF, Provost S, et al. CKM and LILRB5 are associated with serum levels of creatine kinase. Circul Cardiov Gen 2014; 7:880-6; PMID:25214527; http://dx.doi.org/10.1161/CIRCGENETICS.113.000395
  • Maeda A, Kurosaki M, Ono M, Takai T, Kurosaki T. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J Exp Med 1998; 187:1355-60; PMID:9547347; http://dx.doi.org/10.1084/jem.187.8.1355
  • Zhao J, Luo Y, Wang X, Zhou H, Li Q, You Y, Zou P. Prevention of murine acute graft-versus-host disease by recipient-derived paired immunoglobulin-like receptor B lentivirus-transfected dendritic cells. Acta Haematol 2010; 124:134-40; PMID:20881379; http://dx.doi.org/10.1159/000315553
  • Ujike A, Takeda K, Nakamura A, Ebihara S, Akiyama K, Takai T. Impaired dendritic cell maturation and increased T(H)2 responses in PIR-B(-/-) mice. Nat Immunol 2002; 3:542-8; PMID:12021780; http://dx.doi.org/10.1038/ni801
  • Munitz A, Cole ET, Beichler A, Groschwitz K, Ahrens R, Steinbrecher K, Willson T, Han X, Denson L, Rothenberg ME, et al. Paired immunoglobulin-like receptor B (PIR-B) negatively regulates macrophage activation in experimental colitis. Gastroenterol 2010; 139:530-41; PMID:20398663; http://dx.doi.org/10.1053/j.gastro.2010.04.006
  • Karo-Atar D, Moshkovits I, Eickelberg O, Konigshoff M, Munitz A. Paired immunoglobulin-like receptor-B inhibits pulmonary fibrosis by suppressing profibrogenic properties of alveolar macrophages. Am J Resp Cell Mol Biol 2013; 48:456-64; PMID:23258232; http://dx.doi.org/10.1165/rcmb.2012-0329OC
  • Imada M, Masuda K, Satoh R, Ito Y, Goto Y, Matsuoka T, Endo S, Nakamura A, Kawamoto H, Takai T. Ectopically expressed PIR-B on T cells constitutively binds to MHC class I and attenuates T helper type 1 responses. Int Immunol 2009; 21:1151-61; PMID:19684158; http://dx.doi.org/10.1093/intimm/dxp081
  • Munitz A, McBride ML, Bernstein JS, Rothenberg ME. A dual activation and inhibition role for the paired immunoglobulin-like receptor B in eosinophils. Blood 2008; 111:5694-703; PMID:18316626; http://dx.doi.org/10.1182/blood-2007-12-126748
  • Bochner DN, Sapp RW, Adelson JD, Zhang S, Lee H, Djurisic M, Syken J, Dan Y, Shatz CJ. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia. Sci Trans Med 2014; 6:258ra140; http://dx.doi.org/10.1126/scitranslmed.3010157
  • Djurisic M, Vidal GS, Mann M, Aharon A, Kim T, Ferrao Santos A, Zuo Y, Hubener M, Shatz CJ. PirB regulates a structural substrate for cortical plasticity. Proc Natl Acad Sci U S A 2013; 110:20771-6; PMID:24302763; http://dx.doi.org/10.1073/pnas.1321092110
  • Syken J, Grandpre T, Kanold PO, Shatz CJ. PirB restricts ocular-dominance plasticity in visual cortex. Science 2006; 313:1795-800; PMID:16917027; http://dx.doi.org/10.1126/science.1128232
  • Kubagawa H, Chen CC, Ho LH, Shimada TS, Gartland L, Mashburn C, Uehara T, Ravetch JV, Cooper MD. Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J Exp Med 1999; 189:309-18; PMID:9892613; http://dx.doi.org/10.1084/jem.189.2.309
  • Katz HR, LeBlanc PA, Russell SW. Two classes of mouse mast cells delineated by monoclonal antibodies. Proc Natl Acad Sci U S A 1983; 80:5916-8; PMID:6577460; http://dx.doi.org/10.1073/pnas.80.19.5916
  • LeBlanc PA, Biron CA. Mononuclear phagocyte maturation: a cytotoxic monoclonal antibody reactive with postmonoblast stages. Cell Immunol 1984; 83:242-54; PMID:6198098; http://dx.doi.org/10.1016/0008-8749(84)90303-4
  • Zhou JS, Friend DS, Feldweg AM, Daheshia M, Li L, Austen KF, Katz HR. Prevention of lipopolysaccharide-induced microangiopathy by gp49B1: evidence for an important role for gp49B1 expression on neutrophils. J Exp Med 2003; 198:1243-51; PMID:14557414; http://dx.doi.org/10.1084/jem.20030906
  • Wang LL, Chu DT, Dokun AO, Yokoyama WM. Inducible expression of the gp49B inhibitory receptor on NK cells. J Immunol 2000; 164:5215-20; http://dx.doi.org/10.4049/jimmunol.164.10.5215
  • Gu X, Laouar A, Wan J, Daheshia M, Lieberman J, Yokoyama WM, Katz HR, Manjunath N. The gp49B1 inhibitory receptor regulates the IFN-gamma responses of T cells and NK cells. J Immunol 2003; 170:4095-101; http://dx.doi.org/10.4049/jimmunol.170.8.4095
  • Kuroiwa A, Yamashita Y, Inui M, Yuasa T, Ono M, Nagabukuro A, Matsuda Y, Takai T. Association of tyrosine phosphatases SHP-1 and SHP-2, inositol 5-phosphatase SHIP with gp49B1, and chromosomal assignment of the gene. J Biol Chem 1998; 273:1070-4; PMID:9422771; http://dx.doi.org/10.1074/jbc.273.2.1070
  • Wang LL, Blasioli J, Plas DR, Thomas ML, Yokoyama WM. Specificity of the SH2 domains of SHP-1 in the interaction with the immunoreceptor tyrosine-based inhibitory motif-bearing receptor gp49B. J Immunol 1999; 162:1318-23
  • Lu-Kuo JM, Joyal DM, Austen KF, Katz HR. gp49B1 inhibits IgE-initiated mast cell activation through both immunoreceptor tyrosine-based inhibitory motifs, recruitment of src homology 2 domain-containing phosphatase-1, and suppression of early and late calcium mobilization. J Biol Chem 1999; 274:5791-6; PMID:10026201; http://dx.doi.org/10.1074/jbc.274.9.5791
  • Fukao S, Haniuda K, Nojima T, Takai T, Kitamura D. gp49B-mediated negative regulation of antibody production by memory and marginal zone B cells. J Immunol 2014; 193:635-44; http://dx.doi.org/10.4049/jimmunol.1302772
  • Daheshia M, Friend DS, Grusby MJ, Austen KF, Katz HR. Increased severity of local and systemic anaphylactic reactions in gp49B1-deficient mice. J Exp Med 2001; 194:227-34; PMID:11457897; http://dx.doi.org/10.1084/jem.194.2.227
  • Feldweg AM, Friend DS, Zhou JS, Kanaoka Y, Daheshia M, Li L, Austen KF, Katz HR. gp49B1 suppresses stem cell factor-induced mast cell activation-secretion and attendant inflammation in vivo. Eur J Immunol 2003; 33:2262-8; PMID:12884301; http://dx.doi.org/10.1002/eji.200323978
  • Zhou JS, Friend DS, Lee DM, Li L, Austen KF, Katz HR. gp49B1 deficiency is associated with increases in cytokine and chemokine production and severity of proliferative synovitis induced by anti-type II collagen mAb. Eur J Immunol 2005; 35:1530-8; PMID:15827966; http://dx.doi.org/10.1002/eji.200425895
  • Breslow RG, Rao JJ, Xing W, Hong DI, Barrett NA, Katz HR. Inhibition of Th2 adaptive immune responses and pulmonary inflammation by leukocyte Ig-like receptor B4 on dendritic cells. J Immunol 2010; 184:1003-13; http://dx.doi.org/10.4049/jimmunol.0900877
  • Fanning LB, Buckley CC, Xing W, Breslow RG, Katz HR. Downregulation of key early events in the mobilization of antigen-bearing dendritic cells by leukocyte immunoglobulin-like Receptor B4 in a mouse model of allergic pulmonary inflammation. PloS One 2013; 8:e57007
  • Minoo P, Zadeh MM, Rottapel R, Lebrun JJ, Ali S. A novel SHP-1/Grb2-dependent mechanism of negative regulation of cytokine-receptor signaling: contribution of SHP-1 C-terminal tyrosines in cytokine signaling. Blood 2004; 103:1398-407; PMID:14551136; http://dx.doi.org/10.1182/blood-2003-07-2617
  • Dance M, Montagner A, Salles JP, Yart A, Raynal P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 2008; 20:453-9; PMID:17993263; http://dx.doi.org/10.1016/j.cellsig.2007.10.002
  • Meyaard L. LAIR and collagens in immune regulation. Immunol Lett 2010; 128:26-8; PMID:19836418; http://dx.doi.org/10.1016/j.imlet.2009.09.014
  • Perbellini O, Falisi E, Giaretta I, Boscaro E, Novella E, Facco M, Fortuna S, Finotto S, Amati E, Maniscalco F, et al. Clinical significance of LAIR1 (CD305) as assessed by flow cytometry in a prospective series of patients with chronic lymphocytic leukemia. Haematologica 2014; 99:881-7; PMID:24415628; http://dx.doi.org/10.3324/haematol.2013.096362
  • Poggi A, Catellani S, Bruzzone A, Caligaris-Cappio F, Gobbi M, Zocchi MR. Lack of the leukocyte-associated Ig-like receptor-1 expression in high-risk chronic lymphocytic leukaemia results in the absence of a negative signal regulating kinase activation and cell division. Leukemia 2008; 22:980-8; PMID:18288129; http://dx.doi.org/10.1038/leu.2008.21
  • Poggi A, Pellegatta F, Leone BE, Moretta L, Zocchi MR. Engagement of the leukocyte-associated Ig-like receptor-1 induces programmed cell death and prevents NF-kappaB nuclear translocation in human myeloid leukemias. Eur J Immunol 2000; 30:2751-8; PMID:11069054; http://dx.doi.org/10.1002/1521-4141(200010)30:10%3c2751::AID-IMMU2751%3e3.0.CO;2-L
  • Zocchi MR, Pellegatta F, Pierri I, Gobbi M, Poggi A. Leukocyte-associated Ig-like receptor-1 prevents granulocyte-monocyte colony stimulating factor-dependent proliferation and Akt1/PKB alpha activation in primary acute myeloid leukemia cells. Eur J Immunol 2001; 31:3667-75; PMID:11745387; http://dx.doi.org/10.1002/1521-4141(200112)31:12%3c3667::AID-IMMU3667%3e3.0.CO;2-G
  • Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442:818-22; PMID:16862118; http://dx.doi.org/10.1038/nature04980
  • Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 2006; 10:257-68; PMID:17045204; http://dx.doi.org/10.1016/j.ccr.2006.08.020
  • Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y, Chen IM, Chen Z, Rowley JD, Willman CL, et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 2006; 12:945-9; PMID:16892037; http://dx.doi.org/10.1038/nm1443
  • Sugihara E, Shimizu T, Kojima K, Onishi N, Kai K, Ishizawa J, Nagata K, Hashimoto N, Honda H, Kanno M, et al. Ink4a and Arf are crucial factors in the determination of the cell of origin and the therapeutic sensitivity of Myc-induced mouse lymphoid tumor. Oncogene 2011; PMID:21986948
  • Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 2013; 498:502-5; PMID:23739325; http://dx.doi.org/10.1038/nature12216
  • Frei AP, Jeon OY, Kilcher S, Moest H, Henning LM, Jost C, Pluckthun A, Mercer J, Aebersold R, Carreira EM, et al. Direct identification of ligand-receptor interactions on living cells and tissues. Nat Biotech 2012; 30:997-1001; PMID:22983091; http://dx.doi.org/10.1038/nbt.2354
  • Xu M, Zhao R, Zhao ZJ. Identification and characterization of leukocyte-associated Ig-like receptor-1 as a major anchor protein of tyrosine phosphatase SHP-1 in hematopoietic cells. J Biol Chem 2000; 275:17440-6; PMID:10764762; http://dx.doi.org/10.1074/jbc.M001313200
  • Eklund EA, Goldenberg I, Lu Y, Andrejic J, Kakar R. SHP1 protein-tyrosine phosphatase regulates HoxA10 DNA binding and transcriptional repression activity in undifferentiated myeloid cells. J Biol Chem 2002; 277:36878-88; PMID:12145285; http://dx.doi.org/10.1074/jbc.M203917200
  • Verbrugge A, de Ruiter T, Geest C, Coffer PJ, Meyaard L. Differential expression of leukocyte-associated Ig-like receptor-1 during neutrophil differentiation and activation. J Leukoc Biol 2006; 79:828-36; PMID:16461736; http://dx.doi.org/10.1189/jlb.0705370
  • Nihal M Heiba SAE. SHP-1 expression in chronic myeloid leukemia ( clinical significance and impact on response to imatinib treatment). Egypt J Haematol 2013; 38:84-9
  • Tibaldi E, Brunati AM, Zonta F, Frezzato F, Gattazzo C, Zambello R, Gringeri E, Semenzato G, Pagano MA, Trentin L. Lyn-mediated SHP-1 recruitment to CD5 contributes to resistance to apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia 2011; 25:1768-81; PMID:21701493; http://dx.doi.org/10.1038/leu.2011.152
  • Tapley P, Shevde NK, Schweitzer PA, Gallina M, Christianson SW, Lin IL, Stein RB, Shultz LD, Rosen J, Lamb P. Increased G-CSF responsiveness of bone marrow cells from hematopoietic cell phosphatase deficient viable motheaten mice. Exp Hematol 1997; 25:122-31; PMID:9015212
  • Jiao H, Yang W, Berrada K, Tabrizi M, Shultz L, Yi T. Macrophages from motheaten and viable motheaten mutant mice show increased proliferative responses to GM-CSF: detection of potential HCP substrates in GM-CSF signal transduction. Exp Hematol 1997; 25:592-600; PMID:9216734
  • Wu C, Guan Q, Wang Y, Zhao ZJ, Zhou GW. SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. J Cell Biochem 2003; 90:1026-37; PMID:14624462; http://dx.doi.org/10.1002/jcb.10727
  • Lorenz U, Bergemann AD, Steinberg HN, Flanagan JG, Li X, Galli SJ, Neel BG. Genetic analysis reveals cell type-specific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHP1. J Exp Med 1996; 184:1111-26; PMID:9064328; http://dx.doi.org/10.1084/jem.184.3.1111
  • Paulson RF, Vesely S, Siminovitch KA, Bernstein A. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1. Nat Genet 1996; 13:309-15; PMID:8673130; http://dx.doi.org/10.1038/ng0796-309
  • Koyama M, Oka T, Ouchida M, Nakatani Y, Nishiuchi R, Yoshino T, Hayashi K, Akagi T, Seino Y. Activated proliferation of B-cell lymphomas/leukemias with the SHP1 gene silencing by aberrant CpG methylation. Lab Invest 2003; 83:1849-58; PMID:14691303; http://dx.doi.org/10.1097/01.LAB.0000106503.65258.2B
  • Uhm KO, Lee ES, Lee YM, Park JS, Kim SJ, Kim BS, Kim HS, Park SH. Differential methylation pattern of ID4, SFRP1, and SHP1 between acute myeloid leukemia and chronic myeloid leukemia. J Korean Med Sci 2009; 24:493-7; PMID:19543515; http://dx.doi.org/10.3346/jkms.2009.24.3.493
  • Gauffin F, Diffner E, Gustafsson B, Nordgren A, Wingren AG, Sander B, Persson JL, Gustafsson B. Expression of PTEN and SHP1, investigated from tissue microarrays in pediatric acute lymphoblastic, leukemia. Pediat Hematol Oncol 2009; 26:48-56; PMID:19206008; http://dx.doi.org/10.1080/08880010802625530
  • Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 2011; 19:629-39; PMID:21575863; http://dx.doi.org/10.1016/j.ccr.2011.03.023
  • Leal M, Sapra P, Hurvitz SA, Senter P, Wahl A, Schutten M, Shah DK, Haddish-Berhane N, Kabbarah O. Antibody-drug conjugates: an emerging modality for the treatment of cancer. Annal New York Acad Sci 2014; 1321:41-54; PMID:25123209; http://dx.doi.org/10.1111/nyas.12499
  • Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 2015; 263:68-89; PMID:25510272; http://dx.doi.org/10.1111/imr.12243