1,268
Views
12
CrossRef citations to date
0
Altmetric
Report

Ceramide signals for initiation of yeast mating-specific cell cycle arrest

, , , , , & show all
Pages 441-454 | Received 24 Jul 2015, Accepted 27 Nov 2015, Published online: 29 Jan 2016

References

  • Pascual A, Aranda A. Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta 2013; 1830:3908-3916.
  • Golubev A. Transition probability in cell proliferation, stochasticity in cell differentiation, and the restriction point of the cell cycle in one package. Prog Biophys Mol Biol 2012; 110:87-96; PMID:22609564; http://dx.doi.org/10.1016/j.pbiomolbio.2012.05.002
  • Forsburg SL. Only connect: linking meiotic DNA replication to chromosome dynamics. Mol Cell 2002; 9:703-11; PMID:11983163; http://dx.doi.org/10.1016/S1097-2765(02)00508-7
  • Wittenberg C, La Valle R. Cell-cycle-regulatory elements and the control of cell differentiation in the budding yeast. Bioessays 2003; 25:856-67; PMID:12938175; http://dx.doi.org/10.1002/bies.10327
  • David NE, Gee M, Andersen B, Naider F, Thorner J, Stevens RC. Expression and purification of the Saccharomyces cerevisiae alpha-factor receptor (Ste2p), a 7-transmembrane-segment G protein-coupled receptor. J Biol Chem 1997; 272:15553-61; PMID:9182592; http://dx.doi.org/10.1074/jbc.272.24.15553
  • Dohlman HG, Thorner JW. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 2001; 70:703-54; PMID:11395421; http://dx.doi.org/10.1146/annurev.biochem.70.1.703
  • Hagen DC, McCaffrey G, Sprague GF, Jr. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci U S A 1986; 83:1418-22; PMID:3006051; http://dx.doi.org/10.1073/pnas.83.5.1418
  • Bardwell L. A walk-through of the yeast mating pheromone response pathway. Peptides 2005; 26:339-50; PMID:15690603; http://dx.doi.org/10.1016/j.peptides.2004.10.002
  • Wang Y, Dohlman HG. Pheromone Signaling Mechanisms in Yeast: A Prototypical Sex Machine. Science 2004; 306:1508-9; PMID:15567849; http://dx.doi.org/10.1126/science.1104568
  • Dickson RC. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 2008; 49:909-21; PMID:18296751; http://dx.doi.org/10.1194/jlr.R800003-JLR200
  • Horvath A, Sutterlin C, Manning-Krieg U, Movva NR, Riezman H. Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J 1994; 13:3687-95; PMID:8070398
  • Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB, Lester RL. Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem 1997; 272:30196-200; PMID:9374502; http://dx.doi.org/10.1074/jbc.272.48.30196
  • Sutterlin C, Doering TL, Schimmoller F, Schroder S, Riezman H. Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J Cell Sci 1997; 110 (Pt 21):2703-14; PMID:9427388
  • Bagnat A, S. Keranen, A. Shevchenko, K. Simons. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 2000; 97:3254-9; PMID:10716729; http://dx.doi.org/10.1073/pnas.97.7.3254
  • Lester RL, Dickson RC. High-performance liquid chromatography analysis of molecular species of sphingolipid-related long chain bases and long chain base phosphates in Saccharomyces cerevisiae after derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Anal Biochem 2001; 298:283-92; PMID:11700984; http://dx.doi.org/10.1006/abio.2001.5368
  • Dickson RC, Lester RL. Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta 2002; 1583:13-25; PMID:12069845; http://dx.doi.org/10.1016/S1388-1981(02)00210-X
  • Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 1995; 20:73-7; PMID:7701566; http://dx.doi.org/10.1016/S0968-0004(00)88961-6
  • Hannun YA, Linardic CM. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1993; 1154:223-36; PMID:8280742; http://dx.doi.org/10.1016/0304-4157(93)90001-5
  • Kolesnick R, Fuks Z. Ceramide: a signal for apoptosis or mitogenesis? J Exp Med 1995; 181:1949-52; PMID:7759991; http://dx.doi.org/10.1084/jem.181.6.1949
  • Spiegel S, Cuvillier O, Edsall LC, Kohama T, Menzeleev R, Olah Z, Olivera A, Pirianov G, Thomas DM, Tu Z, et al. Sphingosine-1-phosphate in cell growth and cell death. Ann N Y Acad Sci 1998; 845:11-8; PMID:9668339; http://dx.doi.org/10.1111/j.1749-6632.1998.tb09658.x
  • Geilen CC, Wieder T, Orfanos CE. Ceramide signalling: regulatory role in cell proliferation, differentiation and apoptosis in human epidermis. Arch Dermatol Res 1997; 289:559-66; PMID:9373714; http://dx.doi.org/10.1007/s004030050240
  • Alessenko AV. The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation, differentiation and death. Membr Cell Biol 2000; 13:303-20; PMID:10779176
  • Zanolari B, Friant S, Funato K, Sutterlin C, Stevenson BJ, Riezman H. Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J 2000; 19:2824-33; PMID:10856228; http://dx.doi.org/10.1093/emboj/19.12.2824
  • Munn AL. Molecular requirements for the internalisation step of endocytosis: insights from yeast. Biochim Biophys Acta 2001; 1535:236-57; PMID:11278164; http://dx.doi.org/10.1016/S0925-4439(01)00028-X
  • Dickson RC. Roles for sphingolipids in Saccharomyces cerevisiae. Adv Exp Med Biol 2010; 688:217-31; PMID:20919657; http://dx.doi.org/10.1007/978-1-4419-6741-1_15
  • Dickson RC, Sumanasekera C, Lester RL. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog Lipid Res 2006; 45:447-65; PMID:16730802; http://dx.doi.org/10.1016/j.plipres.2006.03.004
  • Jenkins GM, Hannun YA. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. J Biol Chem 2001; 276:8574-81; PMID:11056159; http://dx.doi.org/10.1074/jbc.M007425200
  • Ikeda A, Muneoka T, Murakami S, Hirota A, Yabuki Y, Karashima T, Nakazono K, Tsuruno M, Pichler H, Shirahige K, et al. Sphingolipids regulate telomere clustering by affecting transcriptional levels of genes involved in telomere homeostasis. J Cell Sci 2015; 128:2454-67; PMID:26045446
  • Matmati N, Metelli A, Tripathi K, Yan S, Mohanty BK, Hannun YA. Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast. J Biol Chem 2013; 288:17272-84; PMID:23620586; http://dx.doi.org/10.1074/jbc.M112.444802
  • Tripathi K, Matmati N, Zheng WJ, Hannun YA, Mohanty BK. Cellular morphogenesis under stress is influenced by the sphingolipid pathway gene ISC1 and DNA integrity checkpoint genes in Saccharomyces cerevisiae. Genetics 2011; 189:533-47; PMID:21840863; http://dx.doi.org/10.1534/genetics.111.132092
  • Iwaki S, Sano T, Takagi T, Osumi M, Kihara A, Igarashi Y. Intracellular trafficking pathway of yeast long-chain base kinase Lcb4, from its synthesis to its degradation. J Biol Chem 2007; 282:28485-92; PMID:17686782; http://dx.doi.org/10.1074/jbc.M701607200
  • Kobayashi SD, Nagiec MM. Ceramide/long-chain base phosphate rheostat in Saccharomyces cerevisiae: regulation of ceramide synthesis by Elo3p and Cka2p. Eukaryot Cell 2003; 2:284-94; PMID:12684378; http://dx.doi.org/10.1128/EC.2.2.284-294.2003
  • Nagiec MM, Baltisberger JA, Wells GB, Lester RL, Dickson RC. The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc Natl Acad Sci U S A 1994; 91:7899-902; PMID:8058731; http://dx.doi.org/10.1073/pnas.91.17.7899
  • Jin H, McCaffery JM, Grote E. Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. J Cell Biol 2008; 180:813-26; PMID:18299351; http://dx.doi.org/10.1083/jcb.200705076
  • Pinto WJ, Srinivasan B, Shepherd S, Schmidt A, Dickson RC, Lester RL. Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection. J Bacteriol 1992; 174:2565-74; PMID:1556075
  • Haak D, Gable K, Beeler T, Dunn T. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem 1997; 272:29704-10; PMID:9368039; http://dx.doi.org/10.1074/jbc.272.47.29704
  • Guillas I, Jiang JC, Vionnet C, Roubaty C, Uldry D, Chuard R, Wang J, Jazwinski SM, Conzelmann A. Human Homologues of LAG1 Reconstitute Acyl-CoA-dependent Ceramide Synthesis in Yeast. J Biol Chem 2003; 278:37083-91; PMID:12869556; http://dx.doi.org/10.1074/jbc.M307554200
  • Desfarges L, Durrens P, Juguelin H, Cassagne C, Bonneu M, Aigle M. Yeast mutants affected in viability upon starvation have a modified phospholipid composition. Yeast 1993; 9:267-77; PMID:8488727; http://dx.doi.org/10.1002/yea.320090306
  • Beeler TJ, Fu D, Rivera J, Monaghan E, Gable K, Dunn TM. SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide. Mol Gen Genet 1997; 255:570-9; PMID:9323360; http://dx.doi.org/10.1007/s004380050530
  • Dickson RC, Nagiec EE, Wells GB, Nagiec MM, Lester RL. Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem 1997; 272:29620-5; PMID:9368028; http://dx.doi.org/10.1074/jbc.272.47.29620
  • Zhong W, Jeffries MW, Georgopapadakou NH. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob Agents Chemother 2000; 44:651-3; PMID:10681333; http://dx.doi.org/10.1128/AAC.44.3.651-653.2000
  • Bektas M, Jolly PS, Milstien S, Spiegel S. A specific ceramide kinase assay to measure cellular levels of ceramide. Anal Biochem 2003; 320:259-65; PMID:12927832; http://dx.doi.org/10.1016/S0003-2697(03)00388-9
  • Meier KD, Deloche O, Kajiwara K, Funato K, Riezman H. Sphingoid Base Is Required for Translation Initiation during Heat Stress in Saccharomyces cerevisiae. Mol Biol Cell 2006; 17:1164-75; PMID:16381812; http://dx.doi.org/10.1091/mbc.E05-11-1039
  • Mao C, Xu R, Bielawska A, Szulc ZM, Obeid LM. Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide. J Biol Chem 2000; 275:31369-78; PMID:10900202; http://dx.doi.org/10.1074/jbc.M003683200
  • Nagiec MM, Skrzypek M, Nagiec EE, Lester RL, Dickson RC. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem 1998; 273:19437-42; PMID:9677363; http://dx.doi.org/10.1074/jbc.273.31.19437
  • Mao C, Wadleigh M, Jenkins GM, Hannun YA, Obeid LM. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem 1997; 272:28690-4; PMID:9353337; http://dx.doi.org/10.1074/jbc.272.45.28690
  • Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, Dunn T. The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Delta mutant. J Biol Chem 1998; 273:30688-94; PMID:9804843; http://dx.doi.org/10.1074/jbc.273.46.30688
  • Jones EW. The synthesis and function of proteases in Saccharomyces: genetic approaches. Annu Rev Genet 1984; 18:233-70; PMID:6397123; http://dx.doi.org/10.1146/annurev.ge.18.120184.001313
  • Dohlman HG, Slessareva JE. Pheromone signaling pathways in yeast. Sci STKE 2006; 2006:cm6; PMID:17148787; http://dx.doi.org/10.1126/stke.3642006cm6
  • Errede B, Ammerer G. STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev 1989; 3:1349-61; PMID:2558054; http://dx.doi.org/10.1101/gad.3.9.1349
  • Song D, Dolan JW, Yuan YL, Fields S. Pheromone-dependent phosphorylation of the yeast STE12 protein correlates with transcriptional activation. Genes Dev 1991; 5:741-50; PMID:2026326; http://dx.doi.org/10.1101/gad.5.5.741
  • Hagen DC, McCaffrey G, Sprague GF, Jr. Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol Cell Biol 1991; 11:2952-61; PMID:1903837; http://dx.doi.org/10.1128/MCB.11.6.2952
  • O'Rourke SM, Herskowitz I. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 1998; 12:2874-86; PMID:9744864; http://dx.doi.org/10.1101/gad.12.18.2874
  • Mosch HU, Roberts RL, Fink GR. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1996; 93:5352-6; PMID:8643578; http://dx.doi.org/10.1073/pnas.93.11.5352
  • Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM. A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 2007; 128:519-31; PMID:17289571; http://dx.doi.org/10.1016/j.cell.2006.12.032
  • Strickfaden SC, Pryciak PM. Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein. Mol Biol Cell 2008; 19:181-97; PMID:17978098; http://dx.doi.org/10.1091/mbc.E07-04-0385
  • Mahanty SK, Wang Y, Farley FW, Elion EA. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell 1999; 98:501-12; PMID:10481914; http://dx.doi.org/10.1016/S0092-8674(00)81978-9
  • Gartner A, Nasmyth K, Ammerer G. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev 1992; 6:1280-92; PMID:1628831; http://dx.doi.org/10.1101/gad.6.7.1280
  • Winters MJ, Lamson RE, Nakanishi H, Neiman AM, Pryciak PM. A membrane binding domain in the ste5 scaffold synergizes with gbetagamma binding to control localization and signaling in pheromone response. Mol Cell 2005; 20:21-32; PMID:16209942; http://dx.doi.org/10.1016/j.molcel.2005.08.020
  • Pryciak PM, Huntress FA. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway. Genes Dev 1998; 12:2684-97; PMID:9732267; http://dx.doi.org/10.1101/gad.12.17.2684
  • Pope PA, Pryciak PM. Functional overlap among distinct G1/S inhibitory pathways allows robust G1 arrest by yeast mating pheromones. Mol Biol Cell 2013; 24:3675-88; PMID:24088572; http://dx.doi.org/10.1091/mbc.E13-07-0373
  • Proszynski TJ, Klemm R, Bagnat M, Gaus K, Simons K. Plasma membrane polarization during mating in yeast cells. J Cell Biol 2006; 173:861-6; PMID:16769822; http://dx.doi.org/10.1083/jcb.200602007
  • Garrenton LS, Stefan CJ, McMurray MA, Emr SD, Thorner J. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc Natl Acad Sci U S A 2010; 107:11805-10; PMID:20547860; http://dx.doi.org/10.1073/pnas.1005817107
  • Janetopoulos C, Devreotes P. Phosphoinositide signaling plays a key role in cytokinesis. J Cell Biol 2006; 174:485-90; PMID:16908667; http://dx.doi.org/10.1083/jcb.200603156
  • Brill JA, Hime GR, Scharer-Schuksz M, Fuller MT. A phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis. Development 2000; 127:3855-64; PMID:10934029
  • Czech MP. PIP2 and PIP3: complex roles at the cell surface. Cell 2000; 100:603-6; PMID:10761925; http://dx.doi.org/10.1016/S0092-8674(00)80696-0
  • van Rheenen J, Condeelis J, Glogauer M. A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 2009; 122:305-11; PMID:19158339; http://dx.doi.org/10.1242/jcs.031146
  • Berridge MJ, Brown KD, Irvine RF, Heslop JP. Phosphoinositides and cell proliferation. J Cell Sci Suppl 1985; 3:187-98; PMID:3011822; http://dx.doi.org/10.1242/jcs.1985.Supplement_3.18
  • Paris S, Pouyssegur J. Mitogenic effects of fibroblast growth factors in cultured fibroblasts. Interaction with the G-protein-mediated signaling pathways. Ann N Y Acad Sci 1991; 638:139-48; PMID:1664681; http://dx.doi.org/10.1111/j.1749-6632.1991.tb49024.x
  • Bornfeldt KE, Raines EW, Graves LM, Skinner MP, Krebs EG, Ross R. Platelet-derived growth factor. Distinct signal transduction pathways associated with migration versus proliferation. Ann N Y Acad Sci 1995; 766:416-30; PMID:7486687; http://dx.doi.org/10.1111/j.1749-6632.1995.tb26691.x
  • Wu D, Huang CK, Jiang H. Roles of phospholipid signaling in chemoattractant-induced responses. J Cell Sci 2000; 113 ( Pt 17):2935-40; PMID:10934033
  • Sartorel E, Barrey E, Lau RK, Thorner J. Plasma membrane aminoglycerolipid flippase function is required for signaling competence in the yeast mating pheromone response pathway. Mol Biol Cell 2014; PMID:25378585
  • Mendonsa R, Engebrecht J. Phospholipase D function in Saccharomyces cerevisiae. Biochim Biophys Acta 2009; 1791:970-4; PMID:19416650; http://dx.doi.org/10.1016/j.bbalip.2009.01.013
  • Luo G, Gruhler A, Liu Y, Jensen ON, Dickson RC. The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover. J Biol Chem 2008; 283:10433-44; PMID:18296441; http://dx.doi.org/10.1074/jbc.M709972200
  • Sun Y, Taniguchi R, Tanoue D, Yamaji T, Takematsu H, Mori K, Fujita T, Kawasaki T, Kozutsumi Y. Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol 2000; 20:4411-9; PMID:10825204; http://dx.doi.org/10.1128/MCB.20.12.4411-4419.2000
  • Liu K, Zhang X, Sumanasekera C, Lester RL, Dickson RC. Signalling functions for sphingolipid long-chain bases in Saccharomyces cerevisiae. Biochem Soc Trans 2005; 33:1170-3; PMID:16246074; http://dx.doi.org/10.1042/BST0331170
  • Muir A, Ramachandran S, Roelants FM, Timmons G, Thorner J. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife 2014; 3; http://dx.doi.org/10.6554/elife.03779
  • Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 2007; 27:3154-64; PMID:17261596; http://dx.doi.org/10.1128/MCB.01039-06
  • Fishbein JD, Dobrowsky RT, Bielawska A, Garrett S, Hannun YA. Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem 1993; 268:9255-61; PMID:8387486
  • Nickels JT, Broach JJ. A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae. Genes Dev 1996; 10:382-94; PMID:8600023; http://dx.doi.org/10.1101/gad.10.4.382
  • Friant S, Zanolari B, Riezman H. Increased protein kinase or decreased PP2A activity bypasses sphingoid base requirement in endocytosis. EMBO J 2000; 19:2834-44; PMID:10856229; http://dx.doi.org/10.1093/emboj/19.12.2834
  • McCourt PC, Morgan JM, Nickels JT, Jr. Stress-induced ceramide-activated protein phosphatase can compensate for loss of amphiphysin-like activity in Saccharomyces cerevisiae and functions to reinitiate endocytosis. J Biol Chem 2009; 284:11930-41; PMID:19254955; http://dx.doi.org/10.1074/jbc.M900857200
  • Wells GB, Lester RL. The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids. J Biol Chem 1983; 258:10200-3; PMID:6350287
  • Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998; 14:953-61; PMID:9717241; http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10%3c953::AID-YEA293%3e3.0.CO;2-U
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol 1983; 101:202-11; PMID:6310324; http://dx.doi.org/10.1016/0076-6879(83)01015-0
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. JBacteriol 1983; 153:163-8
  • Villasmil ML, Ansbach A, Nickels JT, Jr. The putative lipid transporter, Arv1, is required for activating pheromone-induced MAP kinase signaling in Saccharomyces cerevisiae. Genetics 2011; 187:455-65; PMID:21098723; http://dx.doi.org/10.1534/genetics.110.120725
  • Pinto WJ, Wells GW, Lester RL. Characterization of enzymatic synthesis of sphingolipid long-chain bases in Saccharomyces cerevisiae: mutant strains exhibiting long-chain-base auxotrophy are deficient in serine palmitoyltransferase activity. J Bacteriol 1992; 174:2575-81; PMID:1556076

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.