1,648
Views
8
CrossRef citations to date
0
Altmetric
Report

Cytokinetic effects of Wee1 disruption in pancreatic cancer

, , , , &
Pages 593-604 | Received 23 Oct 2015, Accepted 30 Dec 2015, Published online: 09 Mar 2016

References

  • Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis 2006; 21(1):3-9; PMID:16314342; http://dx.doi.org/10.1093/mutage/gei063
  • Wang H, Zhang X, Teng L, Legerski RJ. DNA damage checkpoint recovery and cancer development. Exp Cell Res 2015; 334(2):350-8; PMID:25842165; http://dx.doi.org/10.1016/j.yexcr.2015.03.011
  • Kousholt AN, Menzel T, Sorensen CS. Pathways for genome integrity in G2 phase of the cell cycle. Biomolecules 2012; 2(4):579-607; PMID:24970150; http://dx.doi.org/10.3390/biom2040579
  • Medema RH, Macurek L. Checkpoint control and cancer. Oncogene 2012; 31(21):2601-13; PMID:21963855; http://dx.doi.org/10.1038/onc.2011.451
  • Carrassa L, Damia G. Unleashing Chk1 in cancer therapy. Cell Cycle 2011; 10(13):2121-8; PMID:21610326; http://dx.doi.org/10.4161/cc.10.13.16398
  • Do K, Doroshow JH, Kummar S. Wee1 kinase as a target for cancer therapy. Cell Cycle 2013; 12(19):3159-64; PMID:24013427; http://dx.doi.org/10.4161/cc.26062
  • Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N, Imagaki K, Ohtani J, Sakai T, Yoshizumi T, et al. MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther 2010; 9(7):514-22; PMID:20107315; http://dx.doi.org/10.4161/cbt.9.7.11115
  • Kaistha BP, Honstein T, Muller V, Bielak S, Sauer M, Kreider R, Fassan M, Scarpa A, Schmees C, Volkmer H, et al. Key role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells. Br J Cancer 2014; 111(9):1780-7; PMID:25137017; http://dx.doi.org/10.1038/bjc.2014.460
  • Slee RB, Grimes BR, Bansal R, Gore J, Blackburn C, Brown L, Gasaway R, Jeong J, Victorino J, March KL, et al. Selective inhibition of pancreatic ductal adenocarcinoma cell growth by the mitotic MPS1 kinase inhibitor NMS-P715. Mol Cancer Ther 2014; 13(2):307-15; PMID:24282275; http://dx.doi.org/10.1158/1535-7163.MCT-13-0324
  • Vriend LE, De Witt Hamer PC, Van Noorden CJ, Wurdinger T. WEE1 inhibition and genomic instability in cancer. Biochim Biophys Acta 2013; 1836(2):227-35; PMID:23727417
  • Ferrell JE, Jr. Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses. Curr Biol 2008; 18(6):R244-R245; PMID:18364225; http://dx.doi.org/10.1016/j.cub.2008.02.035
  • Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA, Molkentine JM, Mason KA, Meyn RE. MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res 2011; 17(17):5638-48; PMID:21799033; http://dx.doi.org/10.1158/1078-0432.CCR-11-0650
  • Do K, Wilsker D, Ji J, Zlott J, Freshwater T, Kinders RJ, Collins J, Chen AP, Doroshow JH, Kummar S. Phase I Study of Single-Agent AZD1775 (MK-1775), a Wee1 Kinase Inhibitor, in Patients With Refractory Solid Tumors. J Clin Oncol 2015; 33(30):3409-15; PMID:25964244
  • Osman AA, Monroe MM, Ortega Alves MV, Patel AA, Katsonis P, Fitzgerald AL, Neskey DM, Frederick MJ, Woo SH, Caulin C, et al. Wee-1 kinase inhibition overcomes cisplatin resistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence. Mol Cancer Ther 2015; 14(2):608-19; PMID:25504633; http://dx.doi.org/10.1158/1535-7163.MCT-14-0735-T
  • Rajeshkumar NV, De OE, Ottenhof N, Watters J, Brooks D, Demuth T, Shumway SD, Mizuarai S, Hirai H, Maitra A, et al. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 2011; 17(9):2799-806; PMID:21389100; http://dx.doi.org/10.1158/1078-0432.CCR-10-2580
  • Beck H, Nahse-Kumpf V, Larsen MS, O'Hanlon KA, Patzke S, Holmberg C, Mejlvang J, Groth A, Nielsen O, Syljuåsen RG, et al. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol Cell Biol 2012; 32(20):4226-36; PMID:22907750; http://dx.doi.org/10.1128/MCB.00412-12
  • Sorensen CS, Syljuasen RG. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 2012; 40(2):477-86; PMID:21937510; http://dx.doi.org/10.1093/nar/gkr697
  • Beck H, Nahse V, Larsen MS, Groth P, Clancy T, Lees M, Jørgensen M, Helleday T, Syljuåsen RG, Sørensen CS. Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J Cell Biol 2010; 188(5):629-38; PMID:20194642; http://dx.doi.org/10.1083/jcb.200905059
  • Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS, Shumway SD, Toniatti C, Ashworth A, Turner NC. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov 2012; 2(6):524-39; PMID:22628408; http://dx.doi.org/10.1158/2159-8290.CD-11-0320
  • Guertin AD, Li J, Liu Y, Hurd MS, Schuller AG, Long B, Hirsch HA, Feldman I, Benita Y, Toniatti C. Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Mol Cancer Ther 2013; 12(8):1442-52; PMID:23699655; http://dx.doi.org/10.1158/1535-7163.MCT-13-0025
  • Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, Kimura T, Kaneko N, Ohtani J, Yamanaka K, et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 2009; 8(11):2992-3000; PMID:19887545; http://dx.doi.org/10.1158/1535-7163.MCT-09-0463
  • Van Linden AA, Baturin D, Ford JB, Fosmire SP, Gardner L, Korch C, Reigan P, Porter CC. Inhibition of Wee1 sensitizes cancer cells to antimetabolite chemotherapeutics in vitro and in vivo, independent of p53 functionality. Mol Cancer Ther 2013; 12(12):2675-84; PMID:24121103; http://dx.doi.org/10.1158/1535-7163.MCT-13-0424
  • Morgan MA, Parsels LA, Maybaum J, Lawrence TS. Improving the efficacy of chemoradiation with targeted agents. Cancer Discov 2014; 4(3):280-91; PMID:24550033; http://dx.doi.org/10.1158/2159-8290.CD-13-0337
  • Sarcar B, Kahali S, Prabhu AH, Shumway SD, Xu Y, Demuth T, Chinnaiyan P. Targeting radiation-induced G(2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines. Mol Cancer Ther 2011; 10(12):2405-14; PMID:21992793; http://dx.doi.org/10.1158/1535-7163.MCT-11-0469
  • Karnak D, Engelke CG, Parsels LA, Kausar T, Wei D, Robertson JR, Marsh KB, Davis MA, Zhao L, Maybaum J, et al. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer. Clin Cancer Res 2014; 20(19):5085-96; PMID:25117293; http://dx.doi.org/10.1158/1078-0432.CCR-14-1038
  • Lohse I, Borgida A, Cao P, Cheung M, Pintilie M, Bianco T, Holter S, Ibrahimov E, Kumareswaran R, Bristow RG, et al. BRCA1 and BRCA2 mutations sensitize to chemotherapy in patient-derived pancreatic cancer xenografts. Br J Cancer 2015; 113(3):425-32; PMID:26180923; http://dx.doi.org/10.1038/bjc.2015.220
  • Moningi S, Dholakia AS, Raman SP, Blackford A, Cameron JL, Le DT, De Jesus-Acosta AM, Hacker-Prietz A, Rosati LM, Assadi RK, et al. The Role of Stereotactic Body Radiation Therapy for Pancreatic Cancer: A Single-Institution Experience. Ann Surg Oncol 2015; 22(7):2352-8; PMID:25564157; http://dx.doi.org/10.1245/s10434-014-4274-5
  • Jacobberger JW, Sramkoski RM, Stefan T. Multiparameter cell cycle analysis. Methods Mol Biol 2011; 699:229-49; PMID:21116986; http://dx.doi.org/10.1007/978-1-61737-950-5_11
  • Vizeacoumar FJ, Arnold R, Vizeacoumar FS, Chandrashekhar M, Buzina A, Young JT, Kwan JH, Sayad A, Mero P, Lawo S, et al. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol Syst Biol 2013; 9:696; PMID:24104479; http://dx.doi.org/10.1038/msb.2013.54
  • Kreutz B, Hajicek N, Yau DM, Nakamura S, Kozasa T. Distinct regions of Galpha13 participate in its regulatory interactions with RGS homology domain-containing RhoGEFs. Cell Signal 2007; 19(8):1681-9; PMID:17449226; http://dx.doi.org/10.1016/j.cellsig.2007.03.004
  • Gardner JA, Ha JH, Jayaraman M, Dhanasekaran DN. The gep proto-oncogene Galpha13 mediates lysophosphatidic acid-mediated migration of pancreatic cancer cells. Pancreas 2013; 42(5):819-28; PMID:23508014; http://dx.doi.org/10.1097/MPA.0b013e318279c577
  • Chen Z, Guo L, Hadas J, Gutowski S, Sprang SR, Sternweis PC. Activation of p115-RhoGEF requires direct association of Galpha13 and the Dbl homology domain. J Biol Chem 2012; 287(30):25490-500; PMID:22661716; http://dx.doi.org/10.1074/jbc.M111.333716
  • Chang Q, Jurisica I, Do T, Hedley DW. Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically-grown primary xenografts of human pancreatic cancer. Cancer Res 2011; 71(8):3110-20; PMID: 21343390
  • Ng SS, Tsao MS, Nicklee T, Hedley DW. Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol Cancer Ther 2002; 1(10):777-83; PMID:12492110
  • De Witt Hamer PC, Mir SE, Noske D, Van Noorden CJ, Wurdinger T. WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res 2011; 17(13):4200-7; PMID:21562035; http://dx.doi.org/10.1158/1078-0432.CCR-10-2537
  • Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9(4):493-501; PMID:12649500; http://dx.doi.org/10.1261/rna.2192803
  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72(11):8463-71; PMID:9765382
  • Allalunis-Turner MJ, Siemann DW. Recovery of cell subpopulations from human tumour xenografts following dissociation with different enzymes. Br J Cancer 1986; 54(4):615-22; PMID:3535863; http://dx.doi.org/10.1038/bjc.1986.217
  • Blakely K, Ketela T, Moffat J. Pooled lentiviral shRNA screening for functional genomics in mammalian cells. Methods Mol Biol 2011; 781:161-82; PMID:21877282; http://dx.doi.org/10.1007/978-1-61779-276-2_9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.