1,499
Views
16
CrossRef citations to date
0
Altmetric
Report

CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions

, , , &
Pages 654-666 | Received 21 Sep 2015, Accepted 20 Jan 2016, Published online: 30 Mar 2016

References

  • Sharrock WJ. Yolk proteins of Caenorhabditis elegans. Dev Biol 1983; 96:182-188; PMID:6337890; http://dx.doi.org/10.1016/0012-1606(83)90321-4
  • Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ. Inducible antibacterial defense system in C. elegans. Curr Biol 2002; 12:1209-1214; PMID:12176330; http://dx.doi.org/10.1016/S0960-9822(02)00928-4
  • An JH, Blackwell TK. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 2003; 17:1882-1893; PMID:12869585; http://dx.doi.org/10.1101/gad.1107803
  • Libina N, Berman JR, Kenyon C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 2003; 115:489-502; PMID:14622602; http://dx.doi.org/10.1016/S0092-8674(03)00889-4
  • Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, von Ehrenstein G. Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 1978; 75:376-380; PMID:272653; http://dx.doi.org/10.1073/pnas.75.1.376
  • Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983; 100:64-119; PMID:6684600; http://dx.doi.org/10.1016/0012-1606(83)90201-4
  • Leung B, Hermann GJ, Priess JR. Organogenesis of the Caenorhabditis elegans intestine. Dev Biol 1999; 216:114-134; PMID:10588867; http://dx.doi.org/10.1006/dbio.1999.9471
  • Schroeder DF, McGhee JD. Anterior-posterior patterning within the Caenorhabditis elegans endoderm. Development 1998; 125:4877-4887; PMID:9811572
  • Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977; 56:110-156; PMID:838129; http://dx.doi.org/10.1016/0012-1606(77)90158-0
  • Hedgecock EM, White JG. Polyploid tissues in the nematode Caenorhabditis elegans. Dev Biol 1985; 107:128-133; PMID:2578115; http://dx.doi.org/10.1016/0012-1606(85)90381-1
  • Fantes P. Epistatic gene interactions in the control of division in fission yeast. Nature 1979; 279:428-430; PMID:16068179; http://dx.doi.org/10.1038/279428a0
  • Russell P, Nurse P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 1987; 49:559-567; PMID:3032459; http://dx.doi.org/10.1016/0092-8674(87)90458-2
  • Ashcroft NR, Srayko M, Kosinski ME, Mains PE, Golden A. RNA-mediated interference of a cdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. Dev Biol 1999; 206:15-32; PMID:9918692; http://dx.doi.org/10.1006/dbio.1998.9135
  • Ashcroft NR, Golden A. CDC-25.1 regulates germline proliferation in Caenorhabditis elegans. Genesis 2002; 33:1-7; PMID:12001064; http://dx.doi.org/10.1002/gene.10083
  • Clucas C, Cabello J, Büssing I, Schnabel R, Johnstone IL. Oncogenic potential of a C. elegans cdc25 gene is demonstrated by a gain-of-function allele. EMBO J 2002; 21:665-674; PMID:11847114; http://dx.doi.org/10.1093/emboj/21.4.665
  • Kostić I, Roy R. Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans. Development 2002; 129:2155-2165; PMID:11959825
  • Kim J, Lee AR, Kawasaki I, Strome S, Shim YH. A mutation of cdc-25.1 causes defects in germ cells but not in somatic tissues in C. elegans. Mol Cells 2009; 28:43-48; PMID:19533027; http://dx.doi.org/10.1007/s10059-009-0098-8
  • Yoon S, Kawasaki I, Shim YH. CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in Caenorhabditis elegans. Cell Cycle 2012; 11:1354-1363; PMID:22421141; http://dx.doi.org/10.4161/cc.19755
  • Hebeisen M. Roy R. CDC-25.1 stability is regulated by distinct domains to restrict cell division during embryogenesis in C. elegans. Development 2008; 135:1259-1269; PMID:18287204; http://dx.doi.org/10.1242/dev.014969
  • Ashcroft NR, Kosinski ME, Wickramasinghe D, Donovan PJ, Golden A. The four cdc25 genes from the nematode Caenorhabditis elegans. Gene 1998; 214:59-66; PMID:9651482; http://dx.doi.org/10.1016/S0378-1119(98)00228-5
  • Kim J, Kawasaki I, Shim YH. cdc-25.2, a C. elegans ortholog of cdc25, is required to promote oocyte maturation. J Cell Sci 2010; 123:993-1000; PMID:20200231; http://dx.doi.org/10.1242/jcs.060442
  • Yan B, Memar N, Gallinger J, Conradt B. Coordination of cell proliferation and cell fate determination by CES-1 snail. PLoS Genet 2013; 9: e1003884; PMID:24204299; http://dx.doi.org/10.1371/journal.pgen.1003884
  • Edgar BA, O'Farrell PH. Genetic control of cell division patterns in the Drosophila embryo. Cell 1989; 57:177-187; PMID:2702688; http://dx.doi.org/10.1016/0092-8674(89)90183-9
  • Sadhu K, Reed SI, Richardson H, Russell P. Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci USA 1990; 87:5139-5143; PMID:2195549; http://dx.doi.org/10.1073/pnas.87.13.5139
  • Nagata A, Igarashi M, Jinno S, Suto K, Okayama H. An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol 1991; 3:959-968; PMID:1662986
  • Alphey L, Jimenez J, White-Cooper H, Dawson I, Nurse P, Glover DM. twine, a cdc25 homolog that functions in the male and female germline of Drosophila. Cell 1992; 69:977-988; PMID:1606618; http://dx.doi.org/10.1016/0092-8674(92)90616-K
  • Edgar BA, O'Farrell PH. The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 1990; 62:469-480; PMID:2199063; http://dx.doi.org/10.1016/0092-8674(90)90012-4
  • Courtot C, Fankhauser C, Simanis V, Lehner CF. The Drosophila cdc25 homolog twine is required for meiosis. Development 1992; 116:405-416; PMID:1286615
  • Jinno S, Suto K, Nagata A, Igarashi M, Kanaoka Y, Nojima H, Okayama H. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J 1994; 13:1549-1556; PMID:8156993
  • Gabrielli BG, De Souza CP, Tonks ID, Clark JM, Hayward NK, Ellem KA. Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J Cell Sci 1996; 109:1081-1093; PMID:8743955
  • Lammer C, Wagerer S, Saffrich R, Mertens D, Ansorge W, Hoffmann I. The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci 1998; 111:2445-2453; PMID:9683638
  • Ferguson AM, White LS, Donovan PJ, Piwnica-Worms H. Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol Cell Biol 2005; 25:2853-2860; PMID:15767688; http://dx.doi.org/10.1128/MCB.25.7.2853-2860.2005
  • Fukushige T, Hendzel MJ, Bazett-Jones DP, McGhee JD. Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proc Natl Acad Sci USA 1999; 96:11883-11888; PMID:10518545; http://dx.doi.org/10.1073/pnas.96.21.11883
  • Motohashi T, Tabara H, Kohara Y. Protocols for large scale in situ hybridization on C. elegans larvae. WormBook, ed. The C. elegans Research Community. WormBook 2006; doi/10.1895/wormbook.1.103.1, http://www.wormbook.org.
  • Wood WB, Laufer JS, Strome S. Developmental determinants in embryos of Caenorhabditis elegans. J Nematol 1982; 14:267-273; PMID:19295708.
  • Wilson MA, Hoch RV, Ashcroft NR, Kosinski ME, Golden A. A Caenorhabditis elegans wee1 homolog is expressed in a temporally and spatially restricted pattern during embryonic development. Biochim Biophys Acta 1999; 1445:99-109; PMID:10209262; http://dx.doi.org/10.1016/S0167-4781(99)00027-5
  • Boxem M, Srinivasan DG, van den Heuvel S. The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development 1999; 126:2227-2239; PMID:10207147
  • Park M, Krause MW. Regulation of postembryonic G1 cell cycle progression in Caenorhabditis elegans by a cyclin D/CDK-like complex. Development 1999; 126:4849-4860; PMID:10518501
  • Shim EY, Walker AK, Shi Y, Blackwell TK. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev 2002; 16:2135-2146; PMID:12183367; http://dx.doi.org/10.1101/gad.999002
  • van der Voet M, Lorson MA, Srinivasan DG, Bennett KL, van den Heuvel S. C. elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation. Cell Cycle 2009; 8:4091-4102; PMID:19829076; http://dx.doi.org/10.4161/cc.8.24.10171
  • Pilipiuk J, Lefebvre C, Wiesenfahrt T, Legouis R, Bossinger O. Increased IP3/Ca2+ signaling compensates depletion of LET-413/DLG-1 in C. elegans epithelial junction assembly. Dev Biol 2009; 327:34-47; PMID:19109941; http://dx.doi.org/10.1016/j.ydbio.2008.11.025
  • Boxem M, van den Heuvel S. lin-35 Rb and cki-1 Cip/Kip cooperate in developmental regulation of G1 progression in C. elegans. Development 2001; 128:4349-4359; PMID:11684669
  • Fay DS, Han M. Mutations in cye-1, a Caenorhabditis elegans cyclin E homolog, reveal coordination between cell-cycle control and vulval development. Development 2000; 127:4049-4060; PMID:10952902
  • Grishok A, Sharp PA. Negative regulation of nuclear divisions in Caenorhabditis elegans by retinoblastoma and RNA interference-related genes. Proc Natl Acad Sci USA 2005; 102:17360-17365; PMID:16287966; http://dx.doi.org/10.1073/pnas.0508989102
  • Kipreos ET, Gohel SP, Hedgecock EM. The C. elegans F-box/WD-repeat protein LIN-23 functions to limit cell division during development. Development 2000; 127:5071-5082; PMID:11060233
  • Ouellet J, Roy R. The lin-35/Rb and RNAi pathways cooperate to regulate a key cell cycle transition in C. elegans. BMC Dev Biol 2007; 7:38; PMID:17466069; http://dx.doi.org/10.1186/1471-213X-7-38
  • Segref A, Cabello J, Clucas C, Schnabel R, Johnstone IL. Fate specification and tissue-specific cell cycle control of the Caenorhabditis elegans intestine. Mol Biol Cell 2010; 21:725-738; PMID:20053685; http://dx.doi.org/10.1091/mbc.E09-04-0268
  • Kipreos ET. C. elegans cell cycles: invariance and stem cell divisions. Nat Rev Mol Cell Biol 2005; 6:766-776; PMID:16314866; http://dx.doi.org/10.1038/nrm1738
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974; 77:71-94; PMID:4366476
  • Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 1991; 10:3959-3970; PMID:1935914
  • van Fürden D, Johnson K, Segbert C, Bossinger O. The C. elegans ezrin-radixin-moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Dev Biol 2004; 272:262-276; PMID:15242805; http://dx.doi.org/10.1016/j.ydbio.2004.05.012
  • Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, Strome S. PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 1998; 94:635-645; PMID:9741628
  • Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2000; 2:RESEARCH0002-RESEARCH0002.10; PMID:11178279; http://dx.doi.org/10.1186/gb-2000-2-1-research0002
  • Maeda I, Kohara Y, Yamamoto M, Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 2001; 11:171-176; PMID:11231151; http://dx.doi.org/10.1016/S0960-9822(01)00052-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.