1,092
Views
7
CrossRef citations to date
0
Altmetric
Report

Deoxycholic acid (DCA) confers an intestinal phenotype on esophageal squamous epithelium via induction of the stemness-associated reprogramming factors OCT4 and SOX2

, , , , , , , , , , , & show all
Pages 1439-1449 | Received 14 Oct 2015, Accepted 30 Mar 2016, Published online: 13 May 2016

References

  • Bhat S, Coleman HG, Yousef F, Johnston BT, McManus DT, Gavin AT, Murray LJ. Risk of malignant progression in Barrett's esophagus patients: results from a large population-based study. J Natl Cancer Inst 2011; 103:1049-57; PMID:21680910; http://dx.doi.org/10.1093/jnci/djr203
  • Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett's esophagus. N Engl J Med 2011; 365:1375-83; PMID:21995385; http://dx.doi.org/10.1056/NEJMoa1103042
  • Spechler SJ. Barrett esophagus and risk of esophageal cancer: a clinical review. Jama 2013; 310:627-36; PMID:23942681; http://dx.doi.org/10.1001/jama.2013.226450
  • Croagh D, Phillips WA, Redvers R, Thomas RJ, Kaur P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells (Dayton, Ohio) 2007; 25:313-8; PMID:17038667; http://dx.doi.org/10.1634/stemcells.2006-0421
  • Kalabis J, Oyama K, Okawa T, Nakagawa H, Michaylira CZ, Stairs DB, Figueiredo JL, Mahmood U, Diehl JA, Herlyn M, et al. A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Invest 2008; 118:3860-9; PMID:19033657
  • McDonald SA, Lavery D, Wright NA, Jansen M. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol 2015; 12:50-60; PMID:25365976; http://dx.doi.org/10.1038/nrgastro.2014.181
  • Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, Poller D, Harrison R, Novelli MR, Jankowski JA, Wright NA. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett's oesophagus. Gut 2008; 57:1041-8; PMID:18305067; http://dx.doi.org/10.1136/gut.2007.143339
  • Sarosi G, Brown G, Jaiswal K, Feagins LA, Lee E, Crook TW, Souza RF, Zou YS, Shay JW, Spechler SJ. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett's esophagus. Dis Esophagus 2008; 21:43-50; PMID:NOT_FOUND
  • Yu WY, Slack JM, Tosh D. Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol 2005; 284:157-70; PMID:15992795; http://dx.doi.org/10.1016/j.ydbio.2005.04.042
  • Morrow DJ, Avissar NE, Toia L, Redmond EM, Watson TJ, Jones C, Raymond DP, Litle V, Peters JH. Pathogenesis of Barrett's esophagus: Bile acids inhibit the Notch signaling pathway with induction of CDX2 gene expression in human esophageal cells. Surgery 2009; 146:714-22; PMID:19789031; http://dx.doi.org/10.1016/j.surg.2009.06.050
  • Xu YJ, Watanabe T, Okazaki H, Tanigawa T, Watanabe K, Tominaga K, Fujiwara Y, Oshitani N, Arakawa T. Bile Acids Induce Expression of CDx2 and MUC2 in Normal Rat Gastric Epithelial Cells via Activation of Nuclear Receptor FXR - a Possible Mechanism of Intestinal Metaplasia in the Stomach. Gastroenterology 2009; 136:A616-A.
  • Masip M, Veiga A, Izpisua Belmonte JC, Simon C. Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod 2010; 16:856-68; PMID:20616150; http://dx.doi.org/10.1093/molehr/gaq059
  • Watanabe H, Ma Q, Peng S, Adelmant G, Swain D, Song W, Fox C, Francis JM, Pedamallu CS, DeLuca DS, et al. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. J Clinl Invest 2014; 124:1636-45; PMID:24590290; http://dx.doi.org/10.1172/JCI71545
  • Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development (Cambridge, England) 2009; 136:1899-907; PMID:19403656; http://dx.doi.org/10.1242/dev.034629
  • Belting HG, Wendik B, Lunde K, Leichsenring M, Mossner R, Driever W, Onichtchouk D. Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol 2011; 356:323-36; PMID:21621531; http://dx.doi.org/10.1016/j.ydbio.2011.05.660
  • Zhou G, Sun YG, Wang HB, Wang WQ, Wang XW, Fang DC. Acid and bile salt up-regulate BMP4 expression in human esophageal epithelium cells. Scand J Gastroenterol 2009; 44:926-32; PMID:19488929; http://dx.doi.org/10.1080/00365520902998661
  • Wang X, Yang S, Zhao X, Guo H, Ling X, Wang L, Fan C, Yu J, Zhou S. OCT3 and SOX2 promote the transformation of Barrett's esophagus to adenocarcinoma by regulating the formation of tumor stem cells. Oncol Rep 2014; 31:1745-53; PMID:24481676
  • Clark GW, Smyrk TC, Mirvish SS, Anselmino M, Yamashita Y, Hinder RA, DeMeester TR, Birt DF. Effect of gastroduodenal juice and dietary fat on the development of Barrett's esophagus and esophageal neoplasia: an experimental rat model. Ann Surg Oncol 1994; 1:252-61; PMID:7842295; http://dx.doi.org/10.1007/BF02303531
  • Pham TH, Genta RM, Spechler SJ, Souza RF, Wang DH. Development and characterization of a surgical mouse model of reflux esophagitis and Barrett's esophagus. J Gastrointest Surg 2014; 18:234-40; discussion 40–1; PMID:24190247; http://dx.doi.org/10.1007/s11605-013-2386-z
  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122:947-56; PMID:16153702; http://dx.doi.org/10.1016/j.cell.2005.08.020
  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38:431-40; PMID:16518401; http://dx.doi.org/10.1038/ng1760
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663-76; PMID:16904174; http://dx.doi.org/10.1016/j.cell.2006.07.024
  • Vaiphei K, Sinha SK, Kochhar R. Comparative Analysis of Oct4 in Different Histological Subtypes of Esophageal Squamous Cell Carcinomas in Different Clinical Conditions. Asian Pac J Cancer Prev 2014; 15:3519-24; PMID:24870750; http://dx.doi.org/10.7314/APJCP.2014.15.8.3519
  • Zhou X, Huang G-R, Hu P. Over-expression of Oct4 in human esophageal squamous cell carcinoma. Mol Cells 2011; 32:39-45; PMID:21547540; http://dx.doi.org/10.1007/s10059-011-2315-5
  • Wang Q, He W, Lu C, Wang Z, Wang J, Giercksky KE, Nesland JM, Suo Z. Oct3/4 and Sox2 Are Significantly Associated with an Unfavorable Clinical Outcome in Human Esophageal Squamous Cell Carcinoma. Anticancer Res 2009; 29:1233-41; PMID:19414369
  • Stoner GD, Kaighn ME, Reddel RR, Resau JH, Bowman D, Naito Z, Matsukura N, You M, Galati AJ, Harris CC. Establishment and characterization of SV40 T-antigen immortalized human esophageal epithelial cells. Cancer Res 1991; 51:365-71; PMID:1703038
  • Kushner JA. Development. Esophageal stem cells, where art thou? Science 2012; 337:1051-2; PMID:22936766; http://dx.doi.org/10.1126/science.1227506
  • Nicholson AM, Graham TA, Simpson A, Humphries A, Burch N, Rodriguez-Justo M, Novelli M, Harrison R, Wright NA, McDonald SA, et al. Barrett's metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut 2012; 61:1380-9; PMID:22200839; http://dx.doi.org/10.1136/gutjnl-2011-301174
  • Krishnadath KK, Wang KK. Molecular Pathogenesis of Barrett Esophagus: Current Evidence. Gastroenterol Clin North Am 2015; 44:233-47; PMID:26021192; http://dx.doi.org/10.1016/j.gtc.2015.02.002
  • Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 2000; 16:182-7; PMID:10729834; http://dx.doi.org/10.1016/S0168-9525(99)01955-1
  • Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A, Fiedler Z, Keng WT, Sharkey FH, McGill N, Hill CJ, et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet 2006; 15:1413-22; PMID:16543359; http://dx.doi.org/10.1093/hmg/ddl064
  • Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevny LH, Hogan BL. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development (Cambridge, England) 2007; 134:2521-31; PMID:17522155; http://dx.doi.org/10.1242/dev.003855
  • Asonuma S, Imatani A, Abe Y, Koike T, Asano N, Ohara S, Shimosegawa T. The down-regulation of a HMG box gene Sox2 by exposure to acid and bile induces the progression of Barrett's esophagus. Gastroenterology 2008; 134:A437-A; PMID:NOT_FOUND; http://dx.doi.org/10.1016/S0016-5085(08)62041-7
  • Bhardwaj Y, DeMars CJ, Achra S, Anderson M, Prasad GA, Wang KK, Urrutia RA, Buttar N. SOX2 and CDx2, Transcriptional Regulators of Early Differentation, Play a Key Role in the Development of Acid and Bile-Associated Columnar Metaplasia. Gastroenterology 2009; 136:A596-A; PMID:NOT_FOUND; http://dx.doi.org/10.1053/j.gastro.2008.09.028
  • Silberg DG, Swain GP, Suh ER, Traber PG. Cdx1 and cdx2 expression during intestinal development. Gastroenterology 2000; 119:961-71; PMID:11040183; http://dx.doi.org/10.1053/gast.2000.18142
  • Mari L, Milano F, Parikh K, Straub D, Everts V, Hoeben KK, Fockens P, Buttar NS, Krishnadath KK. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep 2014; 7:1197-210; PMID:24794431; http://dx.doi.org/10.1016/j.celrep.2014.03.074
  • Clemons NJ, Koh SY, Phillips WA. Advances in understanding the pathogenesis of Barrett's esophagus. Discov Med 2014; 17:7-14; PMID:24411696
  • Raghoebir L, Biermann K, Buscop-van Kempen M, Wijnen RM, Tibboel D, Smits R, Rottier RJ. Disturbed balance between SOX2 and CDX2 in human vitelline duct anomalies and intestinal duplications. Virchows Archiv 2013; 462:515-22; PMID:23568430; http://dx.doi.org/10.1007/s00428-013-1405-5
  • Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005; 25:6031-46; PMID:15988017; http://dx.doi.org/10.1128/MCB.25.14.6031-6046.2005
  • Lam CS, Mistri TK, Foo YH, Sudhaharan T, Gan HT, Rodda D, Lim LH, Chou C, Robson P, Wohland T, et al. DNA-dependent Oct4-Sox2 interaction and diffusion properties characteristic of the pluripotent cell state revealed by fluorescence spectroscopy. Biochem J 2012; 448:21-33; PMID:22909387; http://dx.doi.org/10.1042/BJ20120725
  • Tanaka S, Kamachi Y, Tanouchi A, Hamada H, Jing N, Kondoh H. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol Cell Biol 2004; 24:8834-46; PMID:15456859; http://dx.doi.org/10.1128/MCB.24.20.8834-8846.2004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.