1,902
Views
17
CrossRef citations to date
0
Altmetric
Reports

Xenopus Mcm10 is a CDK-substrate required for replication fork stability

, , &
Pages 2183-2195 | Received 11 Mar 2016, Accepted 03 Jun 2016, Published online: 24 Jul 2016

References

  • Thu YM, Bielinsky AK. Enigmatic roles of Mcm10 in DNA replication. Trends Biochem Sci 2013; 38:184-94; PMID:23332289; http://dx.doi.org/10.1016/j.tibs.2012.12.003.
  • Merchant AM, Kawasaki Y, Chen Y, Lei M, Tye BK. A lesion in the DNA replication initiation factor Mcm10 induces pausing of elongation forks through chromosomal replication origins in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:3261-71; PMID:9154825; http://dx.doi.org/10.1128/MCB.17.6.3261.
  • Solomon NA, Wright MB, Chang S, Buckley AM, Dumas LB, Gaber RF. Genetic and molecular analysis of DNA43 and DNA52: two new cell-cycle genes in Saccharomyces cerevisiae. Yeast 1992; 8:273-89; PMID:1514326; http://dx.doi.org/10.1002/yea.320080405.
  • Homesley L, Lei M, Kawasaki Y, Sawyer S, Christensen T, Tye BK. Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev 2000; 14:913-26; PMID:10783164.
  • Izumi M, Yatagai F, Hanaoka F. Cell cycle-dependent proteolysis and phosphorylation of human Mcm10. J Biol Chem 2001; 276:48526-31; PMID:11602595; http://dx.doi.org/10.1074/jbc.M101463200.
  • Hart EA, Bryant JA, Moore K, Aves SJ. Fission yeast Cdc23 interactions with DNA replication initiation proteins. Curr Genet 2002; 41:342-8; PMID:12185500; http://dx.doi.org/10.1007/s00294-002-0316-9.
  • Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A. Mcm10 and And-1/CTF4 recruit DNA polymerase α to chromatin for initiation of DNA replication. Genes Dev 2007; 21:2288-99; PMID:17761813; http://dx.doi.org/10.1101/gad.1585607.
  • Lee C, Liachko I, Bouten R, Kelman Z, Tye BK. Alternative mechanisms for coordinating polymerase α and MCM helicase. Mol Cell Biol 2010; 30:423-35; PMID:19917723; http://dx.doi.org/10.1128/MCB.01240-09.
  • Douglas ME, Diffley JF. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the MCM Complex. J Biol Chem 2016; 291(11):5879-88; PMID: 26719337; http://dx.doi.org/10.1074/jbc.M115.707802
  • Quan Y, Xia Y, Liu L, Cui J, Li Z, Cao Q, Chen XS, Campbell JL, Lou H. Cell-Cycle-Regulated Interaction between Mcm10 and Double Hexameric Mcm2-7 Is Required for Helicase Splitting and Activation during S Phase. Cell Rep 2015; 13:2576-86; PMID:26686640; http://dx.doi.org/10.1016/j.celrep.2015.11.018.
  • Christensen TW, Tye BK. Drosophila MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation. Mol Biol Cell 2003; 14:2206-15; PMID:12808023; http://dx.doi.org/10.1091/mbc.E02-11-0706.
  • Sawyer SL, Cheng IH, Chai W, Tye BK. Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae. J Mol Biol 2004; 340:195-202; PMID:15201046; http://dx.doi.org/10.1016/j.jmb.2004.04.066.
  • Di Perna R, Aria V, De Falco M, Sannino V, Okorokov AL, Pisani FM, De Felice M. The physical interaction of Mcm10 with Cdc45 modulates their DNA-binding properties. Biochem J 2013; 454:333-43; PMID:23750504; http://dx.doi.org/10.1042/BJ20130059.
  • Taylor M, Moore K, Murray J, Aves SJ, Price C. Mcm10 interacts with Rad4/Cut5(TopBP1) and its association with origins of DNA replication is dependent on Rad4/Cut5(TopBP1). DNA Repair (Amst) 2011; 10:1154-63; PMID:21945095; http://dx.doi.org/10.1016/j.dnarep.2011.09.001.
  • Im JS, Ki SH, Farina A, Jung DS, Hurwitz J, Lee JK. Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A 2009; 106:15628-32; PMID:19805216; http://dx.doi.org/10.1073/pnas.0908039106.
  • Kliszczak M, Sedlackova H, Pitchai GP, Streicher WW, Krejci L, Hickson ID. Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget 2015; 6:40464-79; PMID:26588054.
  • Xu X, Rochette PJ, Feyissa EA, Su TV, Liu Y. MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO J 2009; 28:3005-14; PMID:19696745; http://dx.doi.org/10.1038/emboj.2009.235.
  • Lee JK, Seo YS, Hurwitz J. The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc Natl Acad Sci U S A 2003; 100:2334-9; PMID:12604790; http://dx.doi.org/10.1073/pnas.0237384100.
  • Wohlschlegel JA, Dhar SK, Prokhorova TA, Dutta A, Walter JC. Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol Cell 2002; 9:233-40; PMID:11864598; http://dx.doi.org/10.1016/S1097-2765(02)00456-2.
  • Ricke RM, Bielinsky AK. Mcm10 regulates the stability and chromatin association of DNA polymerase-α. Mol Cell 2004; 16:173-85; PMID:15494305; http://dx.doi.org/10.1016/j.molcel.2004.09.017.
  • Ricke RM, Bielinsky AK. A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-α in budding yeast. J Biol Chem 2006; 281:18414-25; PMID:16675460; http://dx.doi.org/10.1074/jbc.M513551200.
  • Chattopadhyay S, Bielinsky AK. Human Mcm10 regulates the catalytic subunit of DNA polymerase-α and prevents DNA damage during replication. Mol Biol Cell 2007; 18:4085-95; PMID:17699597; http://dx.doi.org/10.1091/mbc.E06-12-1148.
  • Perez-Arnaiz P, Bruck I, Kaplan DL. Mcm10 coordinates the timely assembly and activation of the replication fork helicase. Nucleic Acids Res 2016; 44:315-29; PMID:26582917; http://dx.doi.org/10.1093/nar/gkv1260.
  • Apger J, Reubens M, Henderson L, Gouge CA, Ilic N, Zhou HH, Christensen TW. Multiple functions for Drosophila Mcm10 suggested through analysis of two Mcm10 mutant alleles. Genetics 2010; 185:1151-65; PMID:20498296; http://dx.doi.org/10.1534/genetics.110.117234.
  • Liachko I, Tye BK. Mcm10 mediates the interaction between DNA replication and silencing machineries. Genetics 2009; 181:379-91; PMID:19064704; http://dx.doi.org/10.1534/genetics.108.099101.
  • Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 2011; 146:80-91; PMID:21729781; http://dx.doi.org/10.1016/j.cell.2011.06.012.
  • Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H. Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 2012; 31:2182-94; PMID:22433840; http://dx.doi.org/10.1038/emboj.2012.68.
  • van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K. Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 2012; 31:2195-206; PMID:22433841; http://dx.doi.org/10.1038/emboj.2012.69.
  • Watase G, Takisawa H, Kanemaki MT. Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol 2012; 22:343-9; PMID:22285032; http://dx.doi.org/10.1016/j.cub.2012.01.023.
  • Park JH, Bang SW, Jeon Y, Kang S, Hwang DS. Knockdown of human MCM10 exhibits delayed and incomplete chromosome replication. Biochem Biophys Res Commun 2008; 365:575-82; PMID:17997977; http://dx.doi.org/10.1016/j.bbrc.2007.11.003.
  • Park JH, Bang SW, Kim SH, Hwang DS. Knockdown of human MCM10 activates G2 checkpoint pathway. Biochem Biophys Res Commun 2008; 365:490-5; PMID:17997981; http://dx.doi.org/10.1016/j.bbrc.2007.11.004.
  • Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell 2009; 35:228-39; PMID:19647519; http://dx.doi.org/10.1016/j.molcel.2009.06.021.
  • Alver RC, Zhang T, Josephrajan A, Fultz BL, Hendrix CJ, Das-Bradoo S, Bielinsky AK. The N-terminus of Mcm10 is important for interaction with the 9-1-1 clamp and in resistance to DNA damage. Nucleic Acids Res 2014; 42:8389-404; PMID:24972833; http://dx.doi.org/10.1093/nar/gku479.
  • Wawrousek KE, Fortini BK, Polaczek P, Chen L, Liu Q, Dunphy WG, Campbell JL. Xenopus DNA2 is a helicase/nuclease that is found in complexes with replication proteins And-1/Ctf4 and Mcm10 and DSB response proteins Nbs1 and ATM. Cell Cycle 2010; 9:1156-66; PMID:20237432; http://dx.doi.org/10.4161/cc.9.6.11049.
  • Blow JJ, Watson JV. Nuclei act as independent and integrated units of replication in a Xenopus cell-free DNA replication system. EMBO J 1987; 6:1997-2002; PMID:3653079.
  • Newport J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 1987; 48:205-17; PMID:3026635; http://dx.doi.org/10.1016/0092-8674(87)90424-7.
  • Blow JJ, Sleeman AM. Replication of purified DNA in Xenopus egg extract is dependent on nuclear assembly. J Cell Sci 1990; 95:383-91; PMID:2384521.
  • Finlay DR, Newmeyer DD, Price TM, Forbes DJ. Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 1987; 104:189-200; PMID:3805121; http://dx.doi.org/10.1083/jcb.104.2.189.
  • Cox LS. DNA replication in cell-free extracts from Xenopus eggs is prevented by disrupting nuclear envelope function. J Cell Sci 1992; 101:43-53; PMID:1569128.
  • Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ. Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biol 2014; 4:130138; PMID:24403013; http://dx.doi.org/10.1098/rsob.130138.
  • Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 2006; 173:673-83; PMID:16754955; http://dx.doi.org/10.1083/jcb.200602108.
  • Jares P, Blow JJ. Xenopus Cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev 2000; 14:1528-40; PMID:10859170.
  • Walter JC. Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J Biol Chem 2000; 275:39773-8; PMID:11005825; http://dx.doi.org/10.1074/jbc.M008107200.
  • Du W, Josephrajan A, Adhikary S, Bowles T, Bielinsky AK, Eichman BF. Mcm10 self-association is mediated by an N-terminal coiled-coil domain. PLoS One 2013; 8:e70518; PMID:23894664; http://dx.doi.org/10.1371/journal.pone.0070518.
  • Okorokov AL, Waugh A, Hodgkinson J, Murthy A, Hong HK, Leo E, Sherman MB, Stoeber K, Orlova EV, Williams GH. Hexameric ring structure of human MCM10 DNA replication factor. EMBO Rep 2007; 8:925-30; PMID:17823614; http://dx.doi.org/10.1038/sj.embor.7401064.
  • Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase α in the initiation of DNA replication. Mol Cell Biol 2006; 26:4843-52; PMID:16782873; http://dx.doi.org/10.1128/MCB.02267-05.
  • Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, Venkitaraman AR. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 2005; 121:887-98; PMID:15960976; http://dx.doi.org/10.1016/j.cell.2005.05.015.
  • Sanuki Y, Kubota Y, Kanemaki MT, Takahashi TS, Mimura S, Takisawa H. RecQ4 promotes the conversion of the pre-initiation complex at a site-specific origin for DNA unwinding in Xenopus egg extracts. Cell Cycle 2015; 14:1010-23; PMID:25602506; http://dx.doi.org/10.1080/15384101.2015.1007003.
  • Strausfeld UP, Howell M, Rempel R, Maller JL, Hunt T, Blow JJ. Cip1 blocks the initiation of DNA replication in Xenopus extracts by inhibition of cyclin-dependent kinases. Curr Biol 1994; 4:876-83; PMID:7850420; http://dx.doi.org/10.1016/S0960-9822(00)00196-2.
  • Luciani MG, Oehlmann M, Blow JJ. Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. J Cell Sci 2004; 117:6019-30; PMID:15536124; http://dx.doi.org/10.1242/jcs.01400.
  • Benatti P, Belluti S, Miotto B, Neusiedler J, Dolfini D, Drac M, Basile V, Schwob E, Mantovani R, Blow JJ, et al. Direct non transcriptional role of NF-Y in DNA replication. Biochim Biophys Acta 2016; 1863:673-85; PMID:26732297; http://dx.doi.org/10.1016/j.bbamcr.2015.12.019.
  • low JJ, Laskey RA. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 1986; 47:577-87; PMID:3779837; http://dx.doi.org/10.1016/0092-8674(86)90622-7.
  • Miotto B, Chibi M, Xie P, Koundrioukoff S, Moolman-Smook H, Pugh D, Debatisse M, He F, Zhang L, Defossez PA. The RBBP6/ZBTB38/MCM10 axis regulates DNA replication and common fragile site stability. Cell Rep 2014; 7:575-87; PMID:24726359; http://dx.doi.org/10.1016/j.celrep.2014.03.030.
  • Vo N, Taga A, Inaba Y, Yoshida H, Cotterill S, Yamaguchi M. Drosophila Mcm10 is required for DNA replication and differentiation in the compound eye. PLoS One 2014; 9:e93450; PMID:24686397; http://dx.doi.org/10.1371/journal.pone.0093450.
  • Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 2015; 519:431-5; PMID:25739503; http://dx.doi.org/10.1038/nature14285.
  • Im JS, Park SY, Cho WH, Bae SH, Hurwitz J, Lee JK. RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells. Cell Cycle 2015; 14:1001-9; PMID:25602958; http://dx.doi.org/10.1080/15384101.2015.1007001.
  • Sonneville R, Craig G, Labib K, Gartner A, Blow JJ. Both Chromosome Decondensation and Condensation Are Dependent on DNA Replication in C. elegans Embryos. Cell Rep 2015; 12:405-17; PMID:26166571; http://dx.doi.org/10.1016/j.celrep.2015.06.046.
  • Reubens MC, Biller MD, Bedsole SE, Hopkins LT, Ables ET, Christensen TW. Mcm10 is required for oogenesis and early embryogenesis in Drosophila. Mech Dev 2015; 138:291-9; PMID:26369283; http://dx.doi.org/10.1016/j.mod.2015.09.002.
  • Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 2006; 21:581-7; PMID:16483939; http://dx.doi.org/10.1016/j.molcel.2006.01.030.
  • Blow JJ, Ge XQ. A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep 2009; 10:406-12; PMID:19218919; http://dx.doi.org/10.1038/embor.2009.5.
  • Becker JR, Nguyen HD, Wang X, Bielinsky AK. Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle 2014; 13:1737-48; PMID:24674891; http://dx.doi.org/10.4161/cc.28652.
  • Gillespie PJ, Gambus A, Blow JJ. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods 2012; 57:203-13; PMID:22521908; http://dx.doi.org/10.1016/j.ymeth.2012.03.029.
  • Gambus A, Khoudoli GA, Jones RC, Blow JJ. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 2011; 286:11855-64; PMID:21282109; http://dx.doi.org/10.1074/jbc.M110.199521.
  • Ferenbach A, Li A, Brito-Martins M, Blow JJ. Functional domains of the Xenopus replication licensing factor Cdt1. Nucleic Acids Res 2005; 33:316-24; PMID:15653632; http://dx.doi.org/10.1093/nar/gki176.
  • Prokhorova TA, Blow JJ. Sequential MCM/P1 subcomplex assembly is required to form a heterohexamer with replication licensing activity. J Biol Chem 2000; 275:2491-8; PMID:10644704; http://dx.doi.org/10.1074/jbc.275.4.2491.
  • Francon P, Lemaitre JM, Dreyer C, Maiorano D, Cuvier O, Mechali M. A hypophosphorylated form of RPA34 is a specific component of pre-replication centers. J Cell Sci 2004; 117:4909-20; PMID:15456845; http://dx.doi.org/10.1242/jcs.01361.
  • Hirano T, Kobayashi R, Hirano M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 1997; 89:511-21; PMID:9160743; http://dx.doi.org/10.1016/S0092-8674(00)80233-0.