940
Views
5
CrossRef citations to date
0
Altmetric
Perspective

Therapeutic implication of concomitant chromosomal aberrations in patients with aggressive B-cell lymphomas

, , &
Pages 2241-2247 | Received 20 Jun 2016, Accepted 26 Jun 2016, Published online: 11 Aug 2016

References

  • Aukema SM, Siebert R, Schuuring E, van Imhoff GW, Kluin-Nelemans HC, Boerma EJ, Kluin PM. Double-hit B-cell lymphomas. Blood 2010; 117:2319-31; PMID:21119107; http://dx.doi.org/10.1182/blood-2010-09-297879
  • Le Gouill S, Talmant P, Touzeau C, Moreau A, Garand R, Juge-Morineau N, Gaillard F, Gastinne T, Milpied N, Moreau P, et al. The clinical presentation and prognosis of diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC rearrangement. Haematologica 2007; 92:1335-42; PMID:18024371; http://dx.doi.org/10.3324/haematol.11305
  • Niitsu N, Okamoto M, Miura I, Hirano M. Clinical features and prognosis of de novo diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC translocations. Leukemia 2009; 23:777-83; PMID:19151788; http://dx.doi.org/10.1038/leu.2008.344
  • Tomita N, Tokunaka M, Nakamura N, Takeuchi K, Koike J, Motomura S, Miyamoto K, Kikuchi A, Hyo R, Yakushijin Y, et al. Clinicopathological features of lymphoma/leukemia patients carrying both BCL2 and MYC translocations. Haematologica 2009; 94:935-43; PMID:19535347; http://dx.doi.org/10.3324/haematol.2008.005355
  • Snuderl M, Kolman OK, Chen YB, Hsu JJ, Ackerman AM, Dal Cin P, Ferry JA, Lee Harris N, Hasserjian RP, Zukerberg LR, et al. B-cell Lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol 2010; 34:327-40; PMID:20118770; http://dx.doi.org/10.1097/PAS.0b013e3181cd3aeb
  • Barrans S, Crouch S, Smith A, Turner K, Owen R, Patmore R, Roman E, Jack A. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-Cell Lymphoma treated in the era of rituximab. J Clin Oncol 2010; 28:3360-5; PMID:20498406; http://dx.doi.org/10.1200/JCO.2009.26.3947
  • Savage KJ, Johnson NA, Ben-Neriah S, Connors JM, Sehn LH, Farinha P, Horsman DE, Gascoyne RD. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood 2009; 114:3533-7; PMID:19704118; http://dx.doi.org/10.1182/blood-2009-05-220095
  • Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, et al. The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms. Blood 2016; 127:2391-405; PMID:27069254; http://dx.doi.org/10.1182/blood-2016-01-643569
  • Petrich AM, Gandhi M, Jovanovic B, Castillo JJ, Rajguru S, Yang DT, Shah KA, Whyman JD, Lansigan F, Hernandez-Ilizaliturri FJ, et al. Impact of induction regimen and stem cell transplantation on outcomes in double-hit lymphoma: a multicenter retrospective analysis. Blood 2014; 124:2354-61; PMID:25161267; http://dx.doi.org/10.1182/blood-2014-05-578963
  • Aukema SM, Kreuz M, Kohler CW, Rosolowski M, Hasenclever D, Hummel M, Küppers R, Lenze D, Ott G, Pott C, et al. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma. Haematologica 2014; 99:726-35; PMID:24179151; http://dx.doi.org/10.3324/haematol.2013.091827
  • Iqbal J, Meyer PN, Smith LM, Johnson NA, Vose JM, Greiner TC, Connors JM, Staudt LM, Rimsza L, Jaffe E, et al. BCL2 predicts survival in germinal center B-cell-like diffuse large B-cell lymphoma treated with CHOP-like therapy and rituximab. Clin Cancer Res 2011; 17:7785-95; PMID:21933893; http://dx.doi.org/10.1158/1078-0432.CCR-11-0267
  • Johnson NA, Savage KJ, Ludkovski O, Ben-Neriah S, Woods R, Steidl C, Dyer MJ, Siebert R, Kuruvilla J, Klasa R, et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood 2009; 114:2273-9; PMID:19597184; http://dx.doi.org/10.1182/blood-2009-03-212191
  • Pedersen MØ, Gang AO, Poulsen TS, Knudsen H, Lauritzen AF, Nielsen SL, Klausen TW, Nørgaard P. MYC translocation partner gene determines survival of patients with large B-cell lymphoma with MYC- or double-hit MYC/BCL2 translocations. Eur J Haematol 2014; 92:42-8; PMID:24118498; http://dx.doi.org/10.1111/ejh.12212
  • Valera A, López-Guillermo A, Cardesa-Salzmann T, Climent F, González-Barca E, Mercadal S, Espinosa Í, Novelli S, Briones J, Mate JL, et al. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica 2013; 98:1554-62; PMID:23716551; http://dx.doi.org/10.3324/haematol.2013.086173
  • Horn H, Ziepert M, Becher C, Barth TF, Bernd HW, Feller AC, Klapper W, Hummel M, Stein H, Hansmann ML, et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 2013; 121:2253-63; PMID:23335369; http://dx.doi.org/10.1182/blood-2012-06-435842
  • Wang W, Hu S, Lu X, Young KH, Medeiros LJ. Triple-hit B-cell lymphoma with MYC, BCL2, and BCL6 translocations/rearrangements: Clinicopathologic Features of 11 Cases. Am J Surg Pathol 2015; 39:1132-9; PMID:25828391; http://dx.doi.org/10.1097/PAS.0000000000000434
  • Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A, Liu W, Visco C, Li Y, Miranda RN, et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from the international DLBCL Rituximab-CHOP consortium program. Blood 2013; 121:4021-31; PMID:23449635; http://dx.doi.org/10.1182/blood-2012-10-460063
  • Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S, Scott DW, Tan KL, Steidl C, Sehn LH, et al. Concurrent Expression of MYC and BCL2 in diffuse large B-Cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30:3452-9; PMID:22851565; http://dx.doi.org/10.1200/JCO.2011.41.0985
  • Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS, Nielsen O, Gadeberg OV, Mourits-Andersen T, Frederiksen M, et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-Cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30:3460-7; PMID:22665537; http://dx.doi.org/10.1200/JCO.2011.41.4342
  • Karube K, Campo E. MYC alterations in diffuse large B-Cell lymphomas. Semin Hematol 2015; 52:97-106; PMID:25805589; http://dx.doi.org/10.1053/j.seminhematol.2015.01.009
  • Swerdlow SH. Diagnosis of “double hit” diffuse large B-cell lymphoma and B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma: when and how, FISH versus IHC. ASH Educ Progr B 2014; 2014:90-9
  • Sarkozy C, Traverse-Glehen A, Coiffier B. Double-hit and double-protein-expression lymphomas: aggressive and refractory lymphomas. Lancet Oncol [ Internet] 2016; 16:e555-67; http://dx.doi.org/10.1016/S1470-2045(15)00005-4
  • Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, Morelli MJ, Bora P, Doni M, Verrecchia A, et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 2014; 511:488-92; PMID:25043028; http://dx.doi.org/10.1038/nature13537
  • Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 2004; 432:635-9; PMID:15577913; http://dx.doi.org/10.1038/nature03147
  • Ranuncolo SM, Polo JM, Melnick A. BCL6 represses CHEK1 and suppresses DNA damage pathways in normal and malignant B-cells. Blood Cells, Mol Dis 2008; 41:95-9; http://dx.doi.org/10.1016/j.bcmd.2008.02.003
  • Ranuncolo SM, Polo JM, Dierov J, Singer M, Kuo T, Greally J, Green R, Carroll M, Melnick A. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol 2007; 8:705-14; PMID:17558410; http://dx.doi.org/10.1038/ni1478
  • Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005; 6:635-45; PMID:16064138; http://dx.doi.org/10.1038/nrm1703
  • Yin X, Giap C, Lazo JS, Prochownik EV. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 2003; 22:6151-9; PMID:13679853; http://dx.doi.org/10.1038/sj.onc.1206641
  • Huang MJ, Cheng Y, Liu CR, Lin S, Liu HE. A small-molecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp Hematol 2006; 34:1480-9; PMID:17046567; http://dx.doi.org/10.1016/j.exphem.2006.06.019
  • Holien T, Misund K, Olsen OE, Baranowska KA, Buene G, Børset M, Waage A, Sundan A. MYC amplifications in myeloma cell lines: correlation with MYC-inhibitor efficacy. Oncotarget 2015; 6:22698-705; PMID:26087190; http://dx.doi.org/10.18632/oncotarget.4245
  • Guo J, Parise RA, Joseph E, Egorin MJ, Lazo JS, Prochownik EV, Eiseman JL. Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc–Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother Pharmacol 2009; 63:615-25; PMID:18509642; http://dx.doi.org/10.1007/s00280-008-0774-y
  • Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang C-L, Mayer S, Takahashi S, Licht JD, Privé GG. Mechanism of SMRT Corepressor recruitment by the BCL6 BTB domain. Mol Cell 2003; 12:1551-64; PMID:14690607; http://dx.doi.org/10.1016/S1097-2765(03)00454-4
  • Cerchietti LC, Yang SN, Shaknovich R, Hatzi K, Polo JM, Chadburn A, Dowdy SF, Melnick A. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 2008; 113:3397-405; PMID:18927431; http://dx.doi.org/10.1182/blood-2008-07-168773
  • Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Zhong S, Matthews M, Bunting KL, Polo JM, Farès C, Arrowsmith CH, et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 2010; 17:400-11; PMID:20385364; http://dx.doi.org/10.1016/j.ccr.2009.12.050
  • Cardenas M, Yu W, Beguelin W, Teater M, Geng H, Goldstein R, Oswald E, Hatzi K, Yang SN, Cohen J, et al. Therapeutic targeting of GCB- and ABC-DLBCLs by rationally designed BCL6 inhibitors. J Clin Invest 2016; 126(9); http://dx.doi.org/10.1172/JCI85795
  • Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15:49-63; PMID:24355989; http://dx.doi.org/10.1038/nrm3722
  • Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 2011; 44:517-31; PMID:22036586; http://dx.doi.org/10.1016/j.molcel.2011.10.001
  • Anderson MA, Huang D, Roberts A. Targeting BCL2 for the treatment of lymphoid malignancies. Semin Hematol 2014; 51:219-27; PMID:25048785; http://dx.doi.org/10.1053/j.seminhematol.2014.05.008
  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005; 17:393-403; PMID:15694340; http://dx.doi.org/10.1016/j.molcel.2004.12.030
  • Vela L, Marzo I. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol 2015; 23:74-81; PMID:26079328; http://dx.doi.org/10.1016/j.coph.2015.05.014
  • Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T, Puvvada SD, Wendtner CM, Roberts AW, Jurczak W, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 2016; 17:768-78; PMID:27178240; http://dx.doi.org/10.1016/S1470-2045(16)30019-5
  • Sasaki N, Kuroda J, Nagoshi H, Yamamoto M, Kobayashi S, Tsutsumi Y, Kobayashi T, Shimura Y, Matsumoto Y, Taki T, et al. Bcl-2 is a better therapeutic target than c-Myc, but attacking both could be a more effective treatment strategy for B-cell lymphoma with concurrent Bcl-2 and c-Myc overexpression. Exp Hematol 2011; 39:817-28.e1; PMID:21640157; http://dx.doi.org/10.1016/j.exphem.2011.05.002
  • Cinar M, Rosenfelt F, Rokhsar S, Lopategui J, Pillai R, Cervania M, Pao A, Cinar B, Alkan S. Concurrent inhibition of MYC and BCL2 is a potentially effective treatment strategy for double hit and triple hit B-cell lymphomas. Leuk Res 2015; 39:730-8; PMID:25916698; http://dx.doi.org/10.1016/j.leukres.2015.04.003
  • Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, Martin P, Leonard J, Melnick A, Cerchietti L. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget 2016; 7:3520-32; PMID:26657288
  • Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010; 19:698-711; PMID:21074720; http://dx.doi.org/10.1016/j.devcel.2010.10.005
  • De S, Shaknovich R, Riester M, Elemento O, Geng H, Kormaksson M, Jiang Y, Woolcock B, Johnson N, Polo JM, et al. Aberration in DNA methylation in B-Cell lymphomas has a complex origin and increases with disease severity. PLoS Genet 2013; 9:e1003137; PMID:23326238; http://dx.doi.org/10.1371/journal.pgen.1003137
  • Shaknovich R, De S, Michor F. Epigenetic diversity in hematopoietic neoplasms. Biochim Biophys Acta - Rev Cancer 2014; 1846:477-84; http://dx.doi.org/10.1016/j.bbcan.2014.09.003
  • Clozel T, Yang S, Elstrom RL, Tam W, Martin P, Kormaksson M, Banerjee S, Vasanthakumar A, Culjkovic B, Scott DW, et al. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-Cell lymphoma. Cancer Discov 2013; 3:1002-19; PMID:23955273; http://dx.doi.org/10.1158/2159-8290.CD-13-0117
  • Pera B, Cerchietti L. Personalized Epigenetic Therapy - Chemosensitivity testing. In: Gray S, editor. Epigenetic Cancer Therapy 2015; 28:667-76; http://dx.doi.org/10.1016/B978-0-12-800206-3.00028-8
  • Lai AY, Fatemi M, Dhasarathy A, Malone C, Sobol SE, Geigerman C, Jaye DL, Mav D, Shah R, Li L, et al. DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med 2010; 207:1939-50; PMID:20733034; http://dx.doi.org/10.1084/jem.20100204
  • Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes Da Gama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, et al. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 2011; 7:818-26; PMID:21946277; http://dx.doi.org/10.1038/nchembio.670
  • Zappasodi R, Bongarzone I, Ghedini GC, Castagnoli L, Cabras AD, Messina A, Tortoreto M, Tripodo C, Magni M, Carlo-Stella C, et al. Serological identification of HSP105 as a novel non-Hodgkin lymphoma therapeutic target. Blood 2011; 118:4421-30; PMID:21860023; http://dx.doi.org/10.1182/blood-2011-06-364570
  • Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, Abraham BJ, Sharma B, Yeung C, Altabef A, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-Driven cancer. Cell 2014; 159:1126-39; PMID:25416950; http://dx.doi.org/10.1016/j.cell.2014.10.024
  • Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, Rahl PB, Sun HH, Yeda KT, Doench JG, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B Cell lymphoma. Cancer Cell 2013; 24:777-90; PMID:24332044; http://dx.doi.org/10.1016/j.ccr.2013.11.003
  • Marullo R, Yang S, Rashal T, Landesman Y, Carlson R, Shacham S, Cerchietti LC. Abstract LB-062: XPO1 is a rational target for double and triple-hit aggressive B-cell lymphomas. Cancer Res 2015; 75:LB - 062 - LB - 062; http://dx.doi.org/10.1158/1538-7445.AM2015-LB-062
  • Stade K, Ford CS, Guthrie C, Weis K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 1997; 90:1041-50; PMID:9323132; http://dx.doi.org/10.1016/S0092-8674(00)80370-0
  • Neggers JE, Vercruysse T, Jacquemyn M, Vanstreels E, Baloglu E, Shacham S, Crochiere M, Landesman Y, Daelemans D. Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem Biol 2015; 22:107-16; PMID:25579209; http://dx.doi.org/10.1016/j.chembiol.2014.11.015
  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, Pandolfi PP. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004; 10:484-6; PMID:15098029; http://dx.doi.org/10.1038/nm1042
  • Truitt ML, Conn CS, Shi Z, Pang X, Tokuyasu T, Coady AM, Seo Y, Barna M, Ruggero D. Differential requirements for eIF4E dose in normal development and cancer. Cell 2015; 162:59-71; PMID:26095252; http://dx.doi.org/10.1016/j.cell.2015.05.049
  • Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden KL. The Oncogene eIF4E Reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep 2012; 2:207-15; PMID:22902403; http://dx.doi.org/10.1016/j.celrep.2012.07.007
  • Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KLB. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci 2004; 101:18105-10; PMID:15601771; http://dx.doi.org/10.1073/pnas.0406927102
  • Assouline S, Culjkovic-Kraljacic B, Bergeron J, Caplan S, Cocolakis E, Lambert C, Lau CJ, Zahreddine HA, Miller WH, Borden KL. A phase I trial of ribavirin and low-dose cytarabine for the treatment of relapsed and refractory acute myeloid leukemia with elevated eIF4E. Haematologica 2015; 100:e7-9; PMID:25425688; http://dx.doi.org/10.3324/haematol.2014.111245
  • Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, Caplan S, Leber B, Roy DC, Miller WH, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 2009; 114:257-60; PMID:19433856; http://dx.doi.org/10.1182/blood-2009-02-205153
  • Culjkovic-Kraljacic B, Fernando TM, Marullo R, Calvo-Vidal N, Verma A, Yang S, Tabb∫ F, Gaudiano M, Zahreddine H, Goldstein RL, et al. Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas. Blood 2015; 127:858-68; PMID:26603836; http://dx.doi.org/10.1182/blood-2015-05-645069
  • Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010; 10:537-49; PMID:20651736; http://dx.doi.org/10.1038/nrc2887
  • Taldone T, Ochiana SO, Patel PD, Chiosis G. Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharmacol Sci 2014; 35:592-603; PMID:25262919; http://dx.doi.org/10.1016/j.tips.2014.09.001
  • Goldstein RL, Yang SN, Taldone T, Chang B, Gerecitano J, Elenitoba-Johnson K, Shaknovich R, Tam W, Leonard JP, Chiosis G, et al. Pharmacoproteomics identifies combinatorial therapy targets for diffuse large B cell lymphoma. J Clin Invest 2015; 125:4559-71; PMID:26529251; http://dx.doi.org/10.1172/JCI80714
  • Cerchietti LC, Lopes EC, Yang SN, Hatzi K, Bunting KL, Tsikitas LA, Mallik A, Robles AI, Walling J, Varticovski L, et al. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat Med 2009; 15:1369-76; PMID:19966776; http://dx.doi.org/10.1038/nm.2059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.