2,840
Views
51
CrossRef citations to date
0
Altmetric
Report

The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation

, , , , , & show all
Pages 33-44 | Received 13 Jun 2016, Accepted 01 Jul 2016, Published online: 20 Dec 2016

References

  • Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113:1701-10; PMID:15199405; http://dx.doi.org/10.1172/JCI200420935
  • Oyagi S, Hirose M, Kojima M, Okuyama M, Kawase M, Nakamura T, Ohgushi H, Yagi K. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol 2006; 44:742-8; PMID:16469408; http://dx.doi.org/10.1016/j.jhep.2005.10.026
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143-7; PMID:10102814; http://dx.doi.org/10.1126/science.284.5411.143
  • Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun 2007; 359:915-20; PMID:17573041; http://dx.doi.org/10.1016/j.bbrc.2007.05.212
  • Tamai K, Yamazaki T, Chino T, Ishii M, Otsuru S, Kikuchi Y, Iinuma S, Saga K, Nimura K, Shimbo T, et al. PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci U S A 2011; 108:6609-14; PMID:21464317; http://dx.doi.org/10.1073/pnas.1016753108
  • Terai S, Sakaida I, Yamamoto N, Omori K, Watanabe T, Ohata S, Katada T, Miyamoto K, Shinoda K, Nishina H, et al. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J Biochem 2003; 134:551-8; PMID:14607982; http://dx.doi.org/10.1093/jb/mvg173
  • Galderisi U, Giordano A. The gap between the physiological and therapeutic roles of mesenchymal stem cells. Med Res Rev 2014; 34:1100-26; PMID:24866817; http://dx.doi.org/10.1002/med.21322
  • Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A 2010; 107:8639-43; PMID:20421459; http://dx.doi.org/10.1073/pnas.0911647107
  • Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant 2016; 25:849-61; PMID:26884346
  • Tsuchiyama K, Wakao S, Kuroda Y, Ogura F, Nojima M, Sawaya N, Yamasaki K, Aiba S, Dezawa M. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol 2013; 133:2425-35; PMID:23563197; http://dx.doi.org/10.1038/jid.2013.172
  • Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, Doi K, Kanayama K, Feng J, Mashiko T, et al. Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cell Transl Med 2015; 4:146-55; PMID:25561682; http://dx.doi.org/10.5966/sctm.2014-0181
  • Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K, Endo F, Kume K, Takahara T, Nitta H, et al. A Distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant 2016; 16:468-83; PMID:26663569; http://dx.doi.org/10.1111/ajt.13537
  • Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 2016; 34:160-73; PMID:26388204; http://dx.doi.org/10.1002/stem.2206
  • Gallina C, Turinetto V, Giachino C. A new paradigm in cardiac regeneration: The mesenchymal stem cell secretome. Stem Cells Int 2015; 2015:765846; PMID:26074978; http://dx.doi.org/10.1155/2015/765846
  • Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell stem cell 2012; 10:244-58; PMID:22385653; http://dx.doi.org/10.1016/j.stem.2012.02.005
  • Severino V, Alessio N, Farina A, Sandomenico A, Cipollaro M, Peluso G, Galderisi U, Chambery A. Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis 2013; 4:e911; PMID:24201810; http://dx.doi.org/10.1038/cddis.2013.445
  • Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 2013; 95:2235-45; PMID:23747841; http://dx.doi.org/10.1016/j.biochi.2013.05.010
  • Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 2013; 95:2196-211; PMID:23880644; http://dx.doi.org/10.1016/j.biochi.2013.07.015
  • Ozcan S, Alessio N, Acar MB, Toprak G, Gonen ZB, Peluso G, Galderisi U. Myeloma cells can corrupt senescent mesenchymal stromal cells and impair their anti-tumor activity. Oncotarget 2015; 6:39482-92; PMID:26498687
  • Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21:2724-52; PMID:22468918; http://dx.doi.org/10.1089/scd.2011.0722
  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2006; 1:2856-60; PMID:17406544; http://dx.doi.org/10.1038/nprot.2006.468
  • Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014; 30:523-30; PMID:24336805; http://dx.doi.org/10.1093/bioinformatics/btt703
  • Benvenuto F, Voci A, Carminati E, Gualandi F, Mancardi G, Uccelli A, Vergani L. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation. Stem Cell Res Ther 2015; 6:245; PMID:26651832; http://dx.doi.org/10.1186/s13287-015-0222-y
  • Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 2007; 25:1966-74; PMID:17510214; http://dx.doi.org/10.1634/stemcells.2007-0167
  • Liu X, Zhang Z, Yan X, Liu H, Zhang L, Yao A, Guo C, Liu X, Xu T. The Rho kinase inhibitor Y-27632 facilitates the differentiation of bone marrow mesenchymal stem cells. J Mol Histol 2014; 45:707-14; PMID:25178638; http://dx.doi.org/10.1007/s10735-014-9594-z
  • Tai IC, Wang YH, Chen CH, Chuang SC, Chang JK, Ho ML. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells' osteogenic differentiation. Int J Nanomedicine 2015; 10:5881-94; PMID:26451103
  • Xu T, Wu M, Feng J, Lin X, Gu Z. RhoA/Rho kinase signaling regulates transforming growth factor-beta1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway. Int J Mol Med 2012; 30:1119-25; PMID:22922645
  • Clapp C, Portt L, Khoury C, Sheibani S, Norman G, Ebner P, Eid R, Vali H, Mandato CA, Madeo F, et al. 14-3-3 protects against stress-induced apoptosis. Cell Death Dis 2012; 3:e348; PMID:22785534; http://dx.doi.org/10.1038/cddis.2012.90
  • Gardino AK, Yaffe MB. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 2011; 22:688-95; PMID:21945648; http://dx.doi.org/10.1016/j.semcdb.2011.09.008
  • Cooper JM, Hausman RE. The Cell: A Molecular Approach. Sunderland, MA, USA: Sinauer Associates, Inc, 2016.
  • Ohgushi M, Minaguchi M, Sasai Y. Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells. Cell Stem Cell 2015; 17:448-61; PMID:26321201; http://dx.doi.org/10.1016/j.stem.2015.07.009
  • Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M, Chen M, Weinstein LS, Taylor SS, Molinolo AA, et al. Inactivation of a Galpha(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol 2015; 17:793-803; PMID:25961504; http://dx.doi.org/10.1038/ncb3164
  • Faherty S, Fitzgerald A, Keohan M, Quinlan LR. Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 expression: the role of the cAMP/PKA pathway. In Vitro Cell Dev Biol Anim 2007; 43:37-47; PMID:17570033; http://dx.doi.org/10.1007/s11626-006-9001-5
  • Lefebvre P, Benomar Y, Staels B. Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 2010; 21:676-83; PMID:20674387; http://dx.doi.org/10.1016/j.tem.2010.06.009
  • Meng Q, Chen X, Wang C, Liu Q, Sun H, Sun P, Peng J, Liu K. Alisol B 23-acetate promotes liver regeneration in mice after partial hepatectomy via activating farnesoid X receptor. Biochem Pharmacol 2014; 92:289-98; PMID:25278094; http://dx.doi.org/10.1016/j.bcp.2014.09.009
  • Ng KY, Chai S, Tong M, Guan XY, Lin CH, Ching YP, et al. C-terminal truncated hepatitis B virus X protein promotes hepatocellular carcinogenesis through induction of cancer and stem cell-like properties. Oncotarget 2016; 7:24005-17.
  • Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C, Richter LA, Hovatta O, et al. Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 2009; 5:409-19; PMID:19796621; http://dx.doi.org/10.1016/j.stem.2009.08.019
  • Elahy M, Baindur-Hudson S, Dass CR. The emerging role of PEDF in stem cell biology. J Biomed Biotechnol 2012; 2012:239091; PMID:22675247; http://dx.doi.org/10.1155/2012/239091
  • Ho TC, Chen SL, Wu JY, Ho MY, Chen LJ, Hsieh JW, Cheng HC, Tsao YP. PEDF promotes self-renewal of limbal stem cell and accelerates corneal epithelial wound healing. Stem Cells 2013; 31:1775-84; PMID:23553951; http://dx.doi.org/10.1002/stem.1393
  • Zille M, Riabinska A, Terzi MY, Balkaya M, Prinz V, Schmerl B, Nieminen-Kelhä M, Endres M, Vajkoczy P, Pina AL. Influence of pigment epithelium-derived factor on outcome after striatal cerebral ischemia in the mouse. PLoS One 2014; 9:e114595; PMID:25470280; http://dx.doi.org/10.1371/journal.pone.0114595
  • Gatto M, Iaccarino L, Ghirardello A, Bassi N, Pontisso P, Punzi L, Shoenfeld Y, Doria A. Serpins, immunity and autoimmunity: old molecules, new functions. Clin Rev Allergy Immunol 2013; 45:267-80; PMID:23325331; http://dx.doi.org/10.1007/s12016-013-8353-3
  • Mangan MS, Kaiserman D, Bird PI. The role of serpins in vertebrate immunity. Tissue Antigens 2008; 72:1-10; PMID:18498291; http://dx.doi.org/10.1111/j.1399-0039.2008.01059.x
  • Francis DM, Shenton BK, Proud G, Taylor RM. Immunosuppressive plasma factors in malignant disease. Aust N Z J Surg 1985; 55:111-20; PMID:2412540; http://dx.doi.org/10.1111/j.1445-2197.1985.tb00869.x
  • koo PH, Khol M. {alpha}2-Macroglobulin (a2M) Mediates T Cell Suppression via a Peptide Sequence in its Cytokine-Binding Site. Faseb Journal 2008; 22:1(Suppl. 848.25)
  • Tayade C, Esadeg S, Fang Y, Croy BA. Functions of alpha 2 macroglobulins in pregnancy. Mol Cell Endocrinol 2005; 245:60-6; PMID:16297527; http://dx.doi.org/10.1016/j.mce.2005.10.004
  • Skornicka EL, Kiyatkina N, Weber MC, Tykocinski ML, Koo PH. Pregnancy zone protein is a carrier and modulator of placental protein-14 in T-cell growth and cytokine production. Cell Immunol 2004; 232:144-56; PMID:15882859; http://dx.doi.org/10.1016/j.cellimm.2005.03.007
  • Murphy K, Travers P, Walport M. Janeway's Immunobiology. New York: Garland Science, 2007.
  • Koutmani Y, Politis PK, Elkouris M, Agrogiannis G, Kemerli M, Patsouris E, Remboutsika E, Karalis KP. Corticotropin-releasing hormone exerts direct effects on neuronal progenitor cells: implications for neuroprotection. Mol Psychiatry 2013; 18:300-7; PMID:23380766; http://dx.doi.org/10.1038/mp.2012.198
  • Kovacs KJ. CRH: the link between hormonal-, metabolic- and behavioral responses to stress. J Chem Neuroanat 2013; 54:25-33; PMID:23774011; http://dx.doi.org/10.1016/j.jchemneu.2013.05.003
  • Onishi K, Zandstra PW. LIF signaling in stem cells and development. Development 2015; 142:2230-6; PMID:26130754; http://dx.doi.org/10.1242/dev.117598
  • Berendsen AD, Olsen BR. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J Histochem Cytochem 2014; 62:103-8; PMID:24309509; http://dx.doi.org/10.1369/0022155413516347
  • Coutu DL, Francois M, Galipeau J. Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood 2011; 117:6801-12; PMID:21527526; http://dx.doi.org/10.1182/blood-2010-12-321539
  • Salehinejad P, Alitheen NB, Mandegary A, Nematollahi-Mahani SN, Janzamin E. Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells. In Vitro Cell Dev Biol Anim 2013; 49:515-23; PMID:23708920; http://dx.doi.org/10.1007/s11626-013-9631-3
  • Jeon E, Yun YR, Kang W, Lee S, Koh YH, Kim HW, Suh CK, Jang JH. Investigating the role of FGF18 in the cultivation and osteogenic differentiation of mesenchymal stem cells. PLoS One 2012; 7:e43982; PMID:22937141; http://dx.doi.org/10.1371/journal.pone.0043982
  • Taha MF, Javeri A, Majidizadeh T, Valojerdi MR. Both BMP4 and serum have significant roles in differentiation of embryonic stem cells to primitive and definitive endoderm. Cytotechnology 2016; 68:1315-24; PMID:26008149
  • Yang Y, Adachi K, Sheridan MA, Alexenko AP, Schust DJ, Schulz LC, Ezashi T, Roberts RM. Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proc Natl Acad Sci U S A 2015; 112:E2337-46; PMID:25870291; http://dx.doi.org/10.1073/pnas.1504778112
  • Bin G, Jiarong Z, Shihao W, Xiuli S, Cheng X, Liangbiao C, Ming Z. Aire promotes the self-renewal of embryonic stem cells through Lin28. Stem Cells Dev 2012; 21:2878-90; PMID:22540148; http://dx.doi.org/10.1089/scd.2012.0097
  • Frelin C, Herrington R, Janmohamed S, Barbara M, Tran G, Paige CJ, Benveniste P, Zuñiga-Pflücker JC, Souabni A, Busslinger M, et al. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat Immunol 2013; 14:1037-44; PMID:23974957; http://dx.doi.org/10.1038/ni.2692
  • Hammoud AA, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, Zeineddine D, Mortada M, Boeuf H. Murine embryonic stem cell plasticity is regulated through Klf5 and maintained by metalloproteinase MMP1 and hypoxia. PLoS One 2016; 11:e0146281; PMID:26731538
  • Infante A, Gago A, de Eguino GR, Calvo-Fernandez T, Gomez-Vallejo V, Llop J, Schlangen K, Fullaondo A, Aransay AM, Martín A, et al. Prelamin A accumulation and stress conditions induce impaired Oct-1 activity and autophagy in prematurely aged human mesenchymal stem cell. Aging (Albany NY) 2014; 6:264-80; PMID:24753226; http://dx.doi.org/10.18632/aging.100651
  • Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, Kang R, Shi LL, Mok J, Lee MJ, et al. The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis 2014; 1:149-61; PMID:25685828; http://dx.doi.org/10.1016/j.gendis.2014.09.004
  • Powers AN, Satija R. Single-cell analysis reveals key roles for Bcl11a in regulating stem cell fate decisions. Genome Biol 2015; 16:199; PMID:26390863; http://dx.doi.org/10.1186/s13059-015-0778-y
  • Tamaoki N, Takahashi K, Aoki H, Iida K, Kawaguchi T, Hatakeyama D, Inden M, Chosa N, Ishisaki A, Kunisada T, et al. The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells. Sci Rep 2014; 4:7283; PMID:25471527; http://dx.doi.org/10.1038/srep07283
  • Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009; 104:170-8, 6p following 8; PMID:19096030; http://dx.doi.org/10.1161/CIRCRESAHA.108.182535
  • Li J, Ghazwani M, Zhang Y, Lu J, Li J, Fan J, Gandhi CR, Li S. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol 2013; 58:522-8; PMID:23178710; http://dx.doi.org/10.1016/j.jhep.2012.11.011
  • Song K, Kwon H, Han C, Zhang J, Dash S, Lim K, Wu T. Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122. Oncotarget 2015; 6:40822-35; PMID:26506419

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.