2,081
Views
19
CrossRef citations to date
0
Altmetric
Report

Genetic controls of DNA damage avoidance in response to acetaldehyde in fission yeast

, , , , , , , & show all
Pages 45-58 | Received 31 Aug 2016, Accepted 08 Sep 2016, Published online: 23 Nov 2016

References

  • WHO. Global status report on alcohol and health 2014. World Health Organization: http://www.who.int/substance_abuse/publications/global_alcohol_report/msb_gsr_2014_1.pdf
  • Boffetta P, Hashibe M, La Vecchia C, Zatonski W, Rehm J. The burden of cancer attributable to alcohol drinking. Int J Cancer 2006; 119:884-7; PMID:16557583; http://dx.doi.org/10.1002/ijc.21903
  • Seitz HK, Pelucchi C, Bagnardi V, La Vecchia C. Epidemiology and pathophysiology of alcohol and breast cancer: Update 2012. Alcohol Alcohol 2012; 47:204-12; PMID:22459019; http://dx.doi.org/10.1093/alcalc/ags011
  • Nelson DE, Jarman DW, Rehm J, Greenfield TK, Rey G, Kerr WC, Miller P, Shield KD, Ye Y, Naimi TS. Alcohol-attributable cancer deaths and years of potential life lost in the United States. Am J Public Health 2013; 103:641-8; PMID:23409916; http://dx.doi.org/10.2105/AJPH.2012.301199
  • Rehm J, Shield KD. Global alcohol-attributable deaths from cancer, liver cirrhosis, and injury in 2010. Alcohol Res 2013; 35:174-83; PMID:24881325
  • Brooks PJ, Zakhari S. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis. Environ Mol Mutagen 2014; 55:77-91; PMID:24282063; http://dx.doi.org/10.1002/em.21824
  • Clauson C, Scharer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 2013; 5:a012732; PMID:24086043; http://dx.doi.org/10.1101/cshperspect.a012732
  • Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 2013; 493:356-63; PMID:23325218; http://dx.doi.org/10.1038/nature11863
  • Moldovan GL, D'Andrea AD. How the fanconi anemia pathway guards the genome. Annu Rev Genet 2009; 43:223-49; PMID:19686080; http://dx.doi.org/10.1146/annurev-genet-102108-134222
  • Walden H, Deans AJ. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu Rev Biophys 2014; 43:257-78; PMID:24773018; http://dx.doi.org/10.1146/annurev-biophys-051013-022737
  • Duxin JP, Dewar JM, Yardimci H, Walter JC. Repair of a DNA-protein crosslink by replication-coupled proteolysis. Cell 2014; 159:346-57; PMID:25303529; http://dx.doi.org/10.1016/j.cell.2014.09.024
  • Auerbach AD. Fanconi anemia and its diagnosis. Mutat Res 2009; 668:4-10; PMID:19622403; http://dx.doi.org/10.1016/j.mrfmmm.2009.01.013
  • Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics 2015; 9:32; PMID:26596371; http://dx.doi.org/10.1186/s40246-015-0054-y
  • Mechilli M, Schinoppi A, Kobos K, Natarajan AT, Palitti F. DNA repair deficiency and acetaldehyde-induced chromosomal alterations in CHO cells. Mutagenesis 2008; 23:51-6; PMID:17989147; http://dx.doi.org/10.1093/mutage/gem042
  • Lorenti Garcia C, Mechilli M, Proietti De Santis L, Schinoppi A, Kobos K, Palitti F. Relationship between DNA lesions, DNA repair and chromosomal damage induced by acetaldehyde. Mutat Res 2009; 662:3-9; PMID:19084543; http://dx.doi.org/10.1016/j.mrfmmm.2008.11.008
  • Abraham J, Balbo S, Crabb D, Brooks PJ. Alcohol metabolism in human cells causes DNA damage and activates the Fanconi anemia-breast cancer susceptibility (FA-BRCA) DNA damage response network. Alcohol Clin Exp Res 2011; 35:2113-20; PMID:21919919; http://dx.doi.org/10.1111/j.1530-0277.2011.01563.x
  • Marietta C, Thompson LH, Lamerdin JE, Brooks PJ. Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis. Mutat Res 2009; 664:77-83; PMID:19428384; http://dx.doi.org/10.1016/j.mrfmmm.2009.03.011
  • Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011; 475:53-8; PMID:21734703; http://dx.doi.org/10.1038/nature10192
  • Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 2012; 489:571-5; PMID:22922648; http://dx.doi.org/10.1038/nature11368
  • Matsufuji Y, Fujimura S, Ito T, Nishizawa M, Miyaji T, Nakagawa J, Ohyama T, Tomizuka N, Nakagawa T. Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis. Yeast 2008; 25:825-33; PMID:19061187; http://dx.doi.org/10.1002/yea.1637
  • Brendel M, Marisco G, Ganda I, Wolter R, Pungartnik C. DNA repair mutant pso2 of Saccharomyces cerevisiae is sensitive to intracellular acetaldehyde accumulated by disulfiram-mediated inhibition of acetaldehyde dehydrogenase. Genet Mol Res 2010; 9:48-57; PMID:20082270; http://dx.doi.org/10.4238/vol9-1gmr695
  • Ristow H, Seyfarth A, Lochmann ER. Chromosomal damages by ethanol and acetaldehyde in Saccharomyces cerevisiae as studied by pulsed field gel electrophoresis. Mutat Res 1995; 326:165-70; PMID:7529880; http://dx.doi.org/10.1016/0027-5107(94)00165-2
  • Fritsch ES, Schacherer J, Bleykasten-Grosshans C, Souciet JL, Potier S, de Montigny J. Influence of genetic background on the occurrence of chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 2009; 10:99; PMID:19267901; http://dx.doi.org/10.1186/1471-2164-10-99
  • Ralser M, Kuhl H, Ralser M, Werber M, Lehrach H, Breitenbach M, Timmermann B. The Saccharomyces cerevisiae W303-K6001 cross-platform genome sequence: insights into ancestry and physiology of a laboratory mutt. Open Biol 2012; 2:120093; PMID:22977733; http://dx.doi.org/10.1098/rsob.120093
  • Schacherer J, Ruderfer DM, Gresham D, Dolinski K, Botstein D, Kruglyak L. Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. PLoS One 2007; 2:e322; PMID:17389913; http://dx.doi.org/10.1371/journal.pone.0000322
  • Forsburg SL, Rhind N. Basic methods for fission yeast. Yeast 2006; 23:173-83; PMID:16498704; http://dx.doi.org/10.1002/yea.1347
  • Hoffman CS, Wood V, Fantes PA. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe model system. Genetics 2015; 201:403-23; PMID:26447128; http://dx.doi.org/10.1534/genetics.115.181503
  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, et al. The genome sequence of Schizosaccharomyces pombe. Nature 2002; 415:871-80; PMID:11859360; http://dx.doi.org/10.1038/nature724
  • Sipiczki M. Where does fission yeast sit on the tree of life? Genome Biol 2000; 1: reviews1011; http://dx.doi.org/10.1186/gb-2000-1-2-reviews1011
  • Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 2014; 94:1-34; PMID:24382882; http://dx.doi.org/10.1152/physrev.00017.2013
  • Noguchi E, Noguchi C, Du LL, Russell P. Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1. Mol Cell Biol 2003; 23:7861-74; PMID:14560029; http://dx.doi.org/10.1128/MCB.23.21.7861-7874.2003
  • Lisby M, Rothstein R, Mortensen UH. Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci U S A 2001; 98:8276-82; PMID:11459964; http://dx.doi.org/10.1073/pnas.121006298
  • Leman AR, Noguchi E. Local and global functions of Timeless and Tipin in replication fork protection. Cell Cycle 2012; 11:3945-55; PMID:22987152; http://dx.doi.org/10.4161/cc.21989
  • Noguchi E, Noguchi C, McDonald WH, Yates JR, 3rd, Russell P. Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol Cell Biol 2004; 24:8342-55; PMID:15367656; http://dx.doi.org/10.1128/MCB.24.19.8342-8355.2004
  • Ansbach AB, Noguchi C, Klansek IW, Heidlebaugh M, Nakamura TM, Noguchi E. RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe. Mol Biol Cell 2008; 19:595-607; PMID:18045993; http://dx.doi.org/10.1091/mbc.E07-06-0618
  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA Damage and Replication Checkpoints. Annu Rev Genet 2002; 36:617-56; PMID:12429704; http://dx.doi.org/10.1146/annurev.genet.36.060402.113540
  • Noguchi E, Ansbach AB, Noguchi C, Russell P. Assays used to study the DNA replication checkpoint in fission yeast. Methods Mol Biol 2009; 521:493-507; PMID:19563125; http://dx.doi.org/10.1007/978-1-60327-815-7_28
  • Doe CL, Osman F, Dixon J, Whitby MC. DNA repair by a Rad22-Mus81-dependent pathway that is independent of Rhp51. Nucleic Acids Res 2004; 32:5570-81; PMID:15486206; http://dx.doi.org/10.1093/nar/gkh853
  • Khasanov FK, Salakhova AF, Chepurnaja OV, Korolev VG, Bashkirov VI. Identification and characterization of the rlp1+, the novel Rad51 paralog in the fission yeast Schizosaccharomyces pombe. DNA Repair (Amst) 2004; 3:1363-74; PMID:15336631; http://dx.doi.org/10.1016/j.dnarep.2004.05.010
  • Stingele J, Schwarz MS, Bloemeke N, Wolf PG, Jentsch S. A DNA-dependent protease involved in DNA-protein crosslink repair. Cell 2014; 158:327-38; PMID:24998930; http://dx.doi.org/10.1016/j.cell.2014.04.053
  • Collis SJ, Ciccia A, Deans AJ, Horejsi Z, Martin JS, Maslen SL, Skehel JM, Elledge SJ, West SC, Boulton SJ. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell 2008; 32:313-24; PMID:18995830; http://dx.doi.org/10.1016/j.molcel.2008.10.014
  • Kuo HK, McMahan S, Rota CM, Kohl KP, Sekelsky J. Drosophila FANCM helicase prevents spontaneous mitotic crossovers generated by the MUS81 and SLX1 nucleases. Genetics 2014; 198:935-45; PMID:25205745; http://dx.doi.org/10.1534/genetics.114.168096
  • Sun W, Nandi S, Osman F, Ahn JS, Jakovleska J, Lorenz A, Whitby MC. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol Cell 2008; 32:118-28; PMID:18851838; http://dx.doi.org/10.1016/j.molcel.2008.08.024
  • Nandi S, Whitby MC. The ATPase activity of Fml1 is essential for its roles in homologous recombination and DNA repair. Nucleic Acids Res 2012; 40:9584-95; PMID:22844101; http://dx.doi.org/10.1093/nar/gks715
  • Budzowska M, Graham TG, Sobeck A, Waga S, Walter JC. Regulation of the Rev1-pol zeta complex during bypass of a DNA interstrand cross-link. EMBO J 2015; 34:1971-85; PMID:26071591; http://dx.doi.org/10.15252/embj.201490878
  • Fu D, Dudimah FD, Zhang J, Pickering A, Paneerselvam J, Palrasu M, Wang H, Fei P. Recruitment of DNA polymerase eta by FANCD2 in the early response to DNA damage. Cell Cycle 2013; 12:803-9; PMID:23388460; http://dx.doi.org/10.4161/cc.23755
  • Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 1991; 194:795-823; PMID:2005825; http://dx.doi.org/10.1016/0076-6879(91)94059-L
  • Alfa C, Fantes P, Hyams J, McLeod M, Warbrick E. Experiments with Fission Yeast: A laboratory course manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1993.
  • Noguchi C, Rapp JB, Skorobogatko YV, Bailey LD, Noguchi E. Swi1 associates with chromatin through the DDT domain and recruits Swi3 to preserve genomic integrity. PLoS One 2012; 7:e43988; PMID:22952839; http://dx.doi.org/10.1371/journal.pone.0043988
  • Rapp JB, Noguchi C, Das MM, Wong LK, Ansbach AB, Holmes AM, Arcangioli B, Noguchi E. Checkpoint-dependent and -independent roles of Swi3 in replication fork recovery and sister chromatid cohesion in fission yeast. PLoS One 2010; 5:e13379; PMID:20967229; http://dx.doi.org/10.1371/journal.pone.0013379
  • Krawchuk MD, Wahls WP. High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology. Yeast 1999; 15:1419-27; PMID:10509024; http://dx.doi.org/10.1002/(SICI)1097-0061(19990930)15:13%3c1419::AID-YEA466%3e3.0.CO;2-Q
  • Sato M, Dhut S, Toda T. New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast 2005; 22:583-91; PMID:15942936; http://dx.doi.org/10.1002/yea.1233
  • al-Khodairy F, Fotou E, Sheldrick KS, Griffiths DJ, Lehmann AR, Carr AM. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell 1994; 5:147-60; PMID:8019001; http://dx.doi.org/10.1091/mbc.5.2.147
  • Coulon S, Noguchi E, Noguchi C, Du LL, Nakamura TM, Russell P. Rad22Rad52-dependent repair of ribosomal DNA repeats cleaved by Slx1-Slx4 endonuclease. Mol Biol Cell 2006; 17:2081-90; PMID:16467377; http://dx.doi.org/10.1091/mbc.E05-11-1006
  • Lambert S, Watson A, Sheedy DM, Martin B, Carr AM. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 2005; 121:689-702; PMID:15935756; http://dx.doi.org/10.1016/j.cell.2005.03.022
  • Carr AM, Schmidt H, Kirchhoff S, Muriel WJ, Sheldrick KS, Griffiths DJ, Basmacioglu CN, Subramani S, Clegg M, Nasim A, et al. The rad16 gene of Schizosaccharomyces pombe: a homolog of the RAD1 gene of Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:2029-40; PMID:8114734; http://dx.doi.org/10.1128/MCB.14.3.2029
  • Rodel C, Kirchhoff S, Schmidt H. The protein sequence and some intron positions are conserved between the switching gene swi10 of Schizosaccharomyces pombe and the human excision repair gene ERCC1. Nucleic Acids Res 1992; 20:6347-53; PMID:1475195; http://dx.doi.org/10.1093/nar/20.23.6347
  • Sheedy DM, Dimitrova D, Rankin JK, Bass KL, Lee KM, Tapia-Alveal C, Harvey SH, Murray JM, O'Connell MJ. Brc1-mediated DNA repair and damage tolerance. Genetics 2005; 171:457-68; PMID:15972456; http://dx.doi.org/10.1534/genetics.105.044966
  • Sugimoto T, Igawa E, Tanihigashi H, Matsubara M, Ide H, Ikeda S. Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage. DNA Repair (Amst) 2005; 4:1270-80; PMID:16076563; http://dx.doi.org/10.1016/j.dnarep.2005.06.009
  • Sommariva E, Pellny TK, Karahan N, Kumar S, Huberman JA, Dalgaard JZ. Schizosaccharomyces pombe Swi1, Swi3, and Hsk1 are components of a novel S-phase response pathway to alkylation damage. Mol Cell Biol 2005; 25:2770-84; PMID:15767681; http://dx.doi.org/10.1128/MCB.25.7.2770-2784.2005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.