1,577
Views
6
CrossRef citations to date
0
Altmetric
Extra View

Translational control of gurken mRNA in Drosophila development

&
Pages 23-32 | Received 26 Sep 2016, Accepted 12 Oct 2016, Published online: 20 Dec 2016

References

  • Norvell A, Wong J, Randolph K, Thompson L. Wispy and Orb cooperate in the cytoplasmic polyadenylation of localized gurken mRNA. Dev Dyn Off Publ Am Assoc Anat 2015; 244:1276-1285.
  • Weil TT, Parton RM, Herpers B, Soetaert J, Veenendaal T, Xanthakis D, Dobbie IM, Halstead JM, Hayashi R, Rabouille C, et al. Drosophila patterning is established by differential association of mRNAs with P bodies. Nat Cell Biol 2012; 14:1305-1313; PMID:23178881; http://dx.doi.org/10.1038/ncb2627
  • Davidson A, Parton RM, Rabouille C, Weil TT, Davis I. Localized translation of gurken/TGF-α mRNA during axis specification is controlled by access to Orb/CPEB on processing bodies. Cell Rep 2016; 14:2451-2462; PMID:26947065; http://dx.doi.org/10.1016/j.celrep.2016.02.038
  • Wong LC, Costa A, McLeod I, Sarkeshik A, Yates J 3rd, Kyin S, Perlman D, Schedl P, et al. The functioning of the drosophila CPEB protein Orb is regulated by phosphorylation and requires casein kinase 2 activity. PLoS One 2011; 6:e24355; PMID:21949709; http://dx.doi.org/10.1371/journal.pone.0024355
  • Jackson RJ, Hellen CU. T, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11:113-127; PMID:20094052; http://dx.doi.org/10.1038/nrm2838
  • Besse F, Ephrussi A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 2008; 9:971-980; PMID:19023284; http://dx.doi.org/10.1038/nrm2548
  • Long RM, Singer RH, Meng X, Gonzalez I, Nasmyth K, Jansen RP. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 1997; 277:383-387; PMID:9219698; http://dx.doi.org/10.1126/science.277.5324.383
  • Deng Y, Singer RH, Gu W. Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 2008; 22:1037-1050; PMID:18413716; http://dx.doi.org/10.1101/gad.1611308
  • Condeelis J, Singer RH. How and why does beta-actin mRNA target? Biol Cell Auspices Eur Cell Biol Organ 2005; 97:97-110.
  • Hüttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X, Bassell GJ, Condeelis J, Singer RH. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 2005; 438:512-515; PMID:16306994; http://dx.doi.org/10.1038/nature04115
  • Neuman-Silberberg FS, Schüpbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 1993; 75:165-174; PMID:7691414; http://dx.doi.org/10.1016/S0092-8674(05)80093-5
  • Roth S. The origin of dorsoventral polarity in Drosophila. Philos Trans R Soc Lond B Biol Sci 2003; 358:1317-1329; PMID:14511478; http://dx.doi.org/10.1098/rstb.2003.1325
  • Van Buskirk C, Schüpbach T. Versatility in signalling: multiple responses to EGF receptor activation during Drosophila oogenesis. Trends Cell Biol 1999; 9:1-4; PMID:10087609; http://dx.doi.org/10.1016/S0962-8924(98)01413-5
  • Cáceres L, Nilson LA. Production of gurken in the nurse cells is sufficient for axis determination in the Drosophila oocyte. Dev Camb Engl 2005; 132:2345-2353.
  • MacDougall N, Clark A, MacDougall E, Davis I. Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps. Dev Cell 2003; 4:307-319; PMID:12636913; http://dx.doi.org/10.1016/S1534-5807(03)00058-3
  • Delanoue R, Herpers B, Soetaert J, Davis I, Rabouille C. Drosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies. Dev Cell 2007; 13:523-538; PMID:17925228; http://dx.doi.org/10.1016/j.devcel.2007.08.022
  • Huynh J-R, St Johnston D. The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr Biol CB 2004; 14:R438-449; PMID:15182695; http://dx.doi.org/10.1016/j.cub.2004.05.040
  • Tan L, Chang JS, Costa A, Schedl P. An autoregulatory feedback loop directs the localized expression of the Drosophila CPEB protein Orb in the developing oocyte. Dev Camb Engl 2001; 128:1159-1169.
  • Wong LC, Schedl P. Cup Blocks the Precocious Activation of the Orb Autoregulatory Loop. PLOS One 2011; 6:e28261; PMID:22164257; http://dx.doi.org/10.1371/journal.pone.0028261
  • Nelson MR, Leidal AM, Smibert CA. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J 2004; 23:150-159; PMID:14685270; http://dx.doi.org/10.1038/sj.emboj.7600026
  • Nakamura A, Sato K, Hanyu-Nakamura K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 2004; 6:69-78; PMID:14723848; http://dx.doi.org/10.1016/S1534-5807(03)00400-3
  • Costa A, Wang Y, Dockendorff TC, Erdjument-Bromage H, Tempst P, Schedl P, Jongens TA. The drosophila fragile X protein functions as a negative regulator in the orb autoregulatory pathway. Dev Cell 2005; 8:331-342; PMID:15737929; http://dx.doi.org/10.1016/j.devcel.2005.01.011
  • Roth S, Neuman-Silberberg FS, Barcelo G, Schüpbach T. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 1995; 81:967-978; PMID:7540118; http://dx.doi.org/10.1016/0092-8674(95)90016-0
  • Weil TT. mRNA localization in the Drosophila germline. RNA Biol 2014; 11:1010-1018; PMID:25482896; http://dx.doi.org/10.4161/rna.36097
  • Becalska AN, Gavis ER. Lighting up mRNA localization in Drosophila oogenesis. Dev Camb Engl 2009; 136:2493-2503.
  • Atkins CM, Nozaki N, Shigeri Y, Soderling TR. Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J Neurosci 2004; 24:5193-5201; PMID:15175389; http://dx.doi.org/10.1523/JNEUROSCI.0854-04.2004
  • Huang Y-S, Jung M-Y, Sarkissian M, Richter JD. N-methyl-d-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and αCaMKII mRNA polyadenylation at synapses. EMBO J 2002; 21:2139-2148; PMID:11980711; http://dx.doi.org/10.1093/emboj/21.9.2139
  • Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 2004; 119:641-651; PMID:15550246; http://dx.doi.org/10.1016/j.cell.2004.10.029
  • Benoit P, Papin C, Kwak JE, Wickens M, Simonelig M. PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Dev Camb Engl 2008; 135:1969-1979.
  • Meggio F, Pinna LA. One-thousand-and-one substrates of protein kinase CK2? FASEB J 2003; 17:349-368; PMID:12631575; http://dx.doi.org/10.1096/fj.02-0473rev
  • Price JV, Clifford RJ, Schüpbach T. The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell 1989; 56:1085-1092; PMID:2493993; http://dx.doi.org/10.1016/0092-8674(89)90641-7
  • Zhao T, Graham OS, Raposo A, St Johnston D. Growing microtubules push the oocyte nucleus to polarize the Drosophila dorsal-ventral axis. Science 2012; 336:999-1003; PMID:22499806; http://dx.doi.org/10.1126/science.1219147
  • Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369:1-15; PMID:12396231; http://dx.doi.org/10.1042/bj20021469
  • Stetina JRV, Orr-Weaver TL. Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 2011; 3:a005553; PMID:21709181
  • Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 1999; 211:157-176; PMID:10395780; http://dx.doi.org/10.1006/dbio.1999.9340
  • Slater DW, Slater I, Gillespie D. Post-fertilization synthesis of polyadenylic acid in sea urchin embryos. Nature 1972; 240:333-337; PMID:4570496; http://dx.doi.org/10.1038/240333a0
  • Bilger A, Fox CA, Wahle E, Wickens M. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev 1994; 8:1106-1116; PMID:7926790; http://dx.doi.org/10.1101/gad.8.9.1106
  • Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 1994; 79:617-627; PMID:7954828; http://dx.doi.org/10.1016/0092-8674(94)90547-9
  • Fernández-Miranda G, Méndez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev 2012; 11:460-472; http://dx.doi.org/10.1016/j.arr.2012.03.004
  • Andrésson T, Ruderman JV. The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J 1998; 17:5627-5637; http://dx.doi.org/10.1093/emboj/17.19.5627
  • Frank-Vaillant M, Haccard O, Thibier C, Ozon R, Arlot-Bonnemains Y, Prigent C, Jessus C. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J Cell Sci 2000; 113 (Pt 7):1127-1138; PMID:10704364
  • Mendez R. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J 2002; 21:1833-1844; PMID:11927567; http://dx.doi.org/10.1093/emboj/21.7.1833
  • Barkoff AF, Dickson KS, Gray NK, Wickens M. Translational Control of Cyclin B1 mRNA during meiotic maturation: Coordinated repression and cytoplasmic polyadenylation. Dev Biol 2000; 220:97-109; PMID:10720434; http://dx.doi.org/10.1006/dbio.2000.9613
  • Richter JD. Breaking the code of polyadenylation-induced translation. Cell 2008; 132:335-337; PMID:18267064; http://dx.doi.org/10.1016/j.cell.2008.01.024
  • Piqué M, López JM, Foissac S, Guigó R, Méndez R. A combinatorial code for CPE-mediated translational control. Cell 2008; 132:434-448; http://dx.doi.org/10.1016/j.cell.2007.12.038
  • Chu T, Henrion G, Haegeli V, Strickland S. Cortex, a Drosophila gene required to complete oocyte meiosis, is a member of the Cdc20/fizzy protein family. Genes N Y N 2000 2001; 29:141-152.
  • Swan A, Schüpbach T. The Cdc20 (Fzy)/Cdh1-related protein, Cort, cooperates with Fzy in cyclin destruction and anaphase progression in meiosis I and II in Drosophila. Development 2007; 134:891-899; PMID:17251266; http://dx.doi.org/10.1242/dev.02784
  • Pines J. Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 2011; 12:427-438; PMID:21633387; http://dx.doi.org/10.1038/nrm3132
  • Pesin JA, Orr-Weaver TL. Developmental role and regulation of cortex, a meiosis-specific anaphase-promoting complex/cyclosome activator. PLOS Genet 2007; 3:e202; PMID:18020708; http://dx.doi.org/10.1371/journal.pgen.0030202
  • Den Elzen N, Pines J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 2001; 153:121-136; PMID:11285279; http://dx.doi.org/10.1083/jcb.153.1.121
  • Nagaoka K, Udagawa T, Richter JD. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat Commun 2012; 3:675; PMID:22334078; http://dx.doi.org/10.1038/ncomms1678
  • Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19:1438-1449; PMID:24202396; http://dx.doi.org/10.1038/nm.3336
  • Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, Richter JD. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene 2016; 35:2893-2901; PMID:26411364; http://dx.doi.org/10.1038/onc.2015.350
  • Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM, Shibuya M. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2:289-300; PMID:12398893; http://dx.doi.org/10.1016/S1535-6108(02)00153-8
  • Lantz V, Chang JS, Horabin JI, Bopp D, Schedl P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev 1994; 8:598-613; PMID:7523244; http://dx.doi.org/10.1101/gad.8.5.598
  • Clouse KN, Ferguson SB, Schüpbach T. Squid, Cup, and PABP55B function together to regulate gurken translation in Drosophila. Dev Biol 2008; 313:713-724; PMID:18082158; http://dx.doi.org/10.1016/j.ydbio.2007.11.008
  • Igreja C, Izaurralde E. CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes Dev 2011; 25:1955-1967; PMID:21937713; http://dx.doi.org/10.1101/gad.17136311
  • Cáceres L, Nilson LA. Translational repression of gurken mRNA in the Drosophila oocyte requires the hnRNP Squid in the nurse cells. Dev Biol 2009; 326:327-334; http://dx.doi.org/10.1016/j.ydbio.2008.11.030
  • Kelley RL. Initial organization of the Drosophila dorsoventral axis depends on an RNA-binding protein encoded by the squid gene. Genes Dev 1993; 7:948-960; PMID:7684991; http://dx.doi.org/10.1101/gad.7.6.948
  • Li W, Klovstad M, Schüpbach T. Repression of Gurken translation by a meiotic checkpoint in Drosophila oogenesis is suppressed by a reduction in the dose of eIF1A. Development 2014; 141(20):3910-21; http://dx.doi.org/10.1242/dev.109306
  • Norvell A, Kelley RL, Wehr K, Schüpbach T. Specific isoforms of squid, a Drosophila hnRNP, perform distinct roles in Gurken localization during oogenesis. Genes Dev 1999; 13:864-876; PMID:10197986; http://dx.doi.org/10.1101/gad.13.7.864
  • Filardo P, Ephrussi A. Bruno regulates gurken during Drosophila oogenesis. Mech Dev 2003; 120:289-297; PMID:12591598; http://dx.doi.org/10.1016/S0925-4773(02)00454-9
  • Yan N, Macdonald PM. Genetic interactions of Drosophila melanogaster arrest reveal roles for translational repressor Bruno in accumulation of Gurken and activity of Delta. Genetics 2004; 168:1433-1442; PMID:15579696; http://dx.doi.org/10.1534/genetics.104.033985
  • Webster PJ, Liang L, Berg CA, Lasko P, Macdonald PM. Translational repressor bruno plays multiple roles in development and is widely conserved. Genes Dev 1997; 11:2510-2521; PMID:9334316; http://dx.doi.org/10.1101/gad.11.19.2510

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.