996
Views
8
CrossRef citations to date
0
Altmetric
Report

Altered apoptosis/autophagy and epigenetic modifications cause the impaired postimplantation octaploid embryonic development in mice

, , , , , , & show all
Pages 82-90 | Received 08 Sep 2016, Accepted 19 Oct 2016, Published online: 28 Nov 2016

References

  • Renny-Byfield S, Wendel JF. Doubling down on genomes: polyploidy and crop plants. Am J Bot 2014; 101:1711-25; PMID:25090999; http://dx.doi.org/10.3732/ajb.1400119
  • Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 2007; 58:377-406; PMID:17280525; http://dx.doi.org/10.1146/annurev.arplant.58.032806.103835
  • Hegarty MJ, Hiscock SJ. Genomic clues to the evolutionary success of polyploid plants. Curr Biol 2008; 18:R435-44; PMID:18492478; http://dx.doi.org/10.1016/j.cub.2008.03.043
  • Wertheim B, Beukeboom LW, van de Zande L. Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet Genome Res 2013; 140:256-69; PMID:23817224; http://dx.doi.org/10.1159/000351998
  • Tarkowski AK, Witkowska A, Opas J. Development of cytochalasin in B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J Embryol Exp Morphol 1977; 41:47-64; PMID:591878
  • Mackay GE, West JD. Fate of tetraploid cells in 4n<–>2n chimeric mouse blastocysts. Mech Dev 2005; 122:1266-81; PMID:16274964; http://dx.doi.org/10.1016/j.mod.2005.09.001
  • Ishiguro N, Kano K, Yamamoto Y, Taniguchi K. Tetraploid cells of enhanced green fluorescent protein transgenic mice in tetraploid/diploid-chimeric embryos. J Reprod Dev 2005; 51:567-72; PMID:16034195; http://dx.doi.org/10.1262/jrd.17004
  • Goto Y, Matsui J, Takagi N. Developmental potential of mouse tetraploid cells in diploid <–>tetraploid chimeric embryos. Int J Dev Biol 2002; 46:741-5; PMID:12216986
  • Eakin GS, Hadjantonakis AK, Papaioannou VE, Behringer RR. Developmental potential and behavior of tetraploid cells in the mouse embryo. Dev Biol 2005; 288:150-9; PMID:16246322; http://dx.doi.org/10.1016/j.ydbio.2005.09.028
  • Wen D, Saiz N, Rosenwaks Z, Hadjantonakis AK, Rafii S. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts. PLoS One 2014; 9:e94730; PMID:24733255; http://dx.doi.org/10.1371/journal.pone.0094730
  • Park MR, Hwang KC, Bui HT, Cho SG, Park C, Song H, Oh JW, Kim JH. Altered gene expression profiles in mouse tetraploid blastocysts. J Reprod Dev 2012; 58:344-52; PMID:22362217; http://dx.doi.org/10.1262/jrd.11-110M
  • Park MR, Lee AR, Bui HT, Park C, Park KK, Cho SG, Song H, Kim JH, Nguyen VT. Chromosome remodeling and differentiation of tetraploid embryos during preimplantation development. Dev Dyn 2011; 240:1660-9; PMID:21547981; http://dx.doi.org/10.1002/dvdy.22653
  • Kawaguchi J, Kano K, Naito K. Expression profiling of tetraploid mouse embryos in the developmental stages using a cDNA microarray analysis. J Reprod Dev 2009; 55:670-5; PMID:19789425; http://dx.doi.org/10.1262/jrd.09-127A
  • Cadart C, Zlotek-Zlotkiewicz E, Le Berre M, Piel M, Matthews HK. Exploring the function of cell shape and size during mitosis. Dev Cell 2014; 29:159-69; PMID:24780736; http://dx.doi.org/10.1016/j.devcel.2014.04.009
  • Avila J. Microtubule functions. Life Sci 1992; 50:327-34; PMID:1732704; http://dx.doi.org/10.1016/0024-3205(92)90433-P
  • Sluder G. Role of spindle microtubules in the control of cell cycle timing. J Cell Biol 1979; 80:674-91; PMID:572367; http://dx.doi.org/10.1083/jcb.80.3.674
  • Horii T, Yamamoto M, Morita S, Kimura M, Nagao Y, Hatada I. p53 suppresses tetraploid development in mice. Sci Rep 2015; 5:8907; PMID:25752699; http://dx.doi.org/10.1038/srep08907
  • Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL, Carnuccio R, Kroemer G. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 2009; 8:1571-6; PMID:19377293; http://dx.doi.org/10.4161/cc.8.10.8498
  • Mizushima N. Autophagy: process and function. Genes Dev 2007; 21:2861-73; PMID:18006683; http://dx.doi.org/10.1101/gad.1599207
  • Winkel GK, Nuccitelli R. Octaploid mouse embryos produced by electrofusion polarize and cavitate at the same time as normal embryos. Gamete Res 1989; 24:93-107; PMID:2591855; http://dx.doi.org/10.1002/mrd.1120240112
  • Gu Y, Shen X, Zhou D, Wang Z, Zhang N, Shan Z, Jin L, Lei L. Selection and expression profiles of reference genes in mouse preimplantation embryos of different ploidies at various developmental stages. PLoS One 2014; 9:e98956; PMID:24927500; http://dx.doi.org/10.1371/journal.pone.0098956
  • Rossant J, Tam PP. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 2009; 136:701-13; PMID:19201946; http://dx.doi.org/10.1242/dev.017178
  • Payer B, Lee JT. X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 2008; 42:733-72; PMID:18729722; http://dx.doi.org/10.1146/annurev.genet.42.110807.091711
  • Hong SH, Rampalli S, Lee JB, McNicol J, Collins T, Draper JS, Bhatia M. Cell fate potential of human pluripotent stem cells is encoded by histone modifications. Cell Stem Cell 2011; 9:24-36; PMID:21726831; http://dx.doi.org/10.1016/j.stem.2011.06.002
  • Cherra SJ, 3rd, Kulich SM, Uechi G, Balasubramani M, Mountzouris J, Day BW, Chu CT. Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 2010; 190:533-9; PMID:20713600; http://dx.doi.org/10.1083/jcb.201002108
  • Modlinski JA. Transfer of embryonic nuclei to fertilised mouse eggs and development of tetraploid blastocysts. Nature 1978; 273:466-7; PMID:566383; http://dx.doi.org/10.1038/273466a0
  • Modlinski JA. The fate of inner cell mass and trophectoderm nuclei transplanted to fertilized mouse eggs. Nature 1981; 292:342-3; PMID:7254330; http://dx.doi.org/10.1038/292342a0
  • Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J. Embryonic stem cells alone are able to support fetal development in the mouse. Development 1990; 110:815-21; PMID:2088722
  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 1993; 90:8424-8; PMID:8378314; http://dx.doi.org/10.1073/pnas.90.18.8424
  • Yamanaka Y, Lanner F, Rossant J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 2010; 137:715-24; PMID:20147376; http://dx.doi.org/10.1242/dev.043471
  • Cerase A, Pintacuda G, Tattermusch A, Avner P. Xist localization and function: new insights from multiple levels. Genome Biol 2015; 16:166; PMID:26282267; http://dx.doi.org/10.1186/s13059-015-0733-y
  • Augui S, Nora EP, Heard E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 2011; 12:429-42; PMID:21587299; http://dx.doi.org/10.1038/nrg2987
  • Nesterova TB, Barton SC, Surani MA, Brockdorff N. Loss of Xist imprinting in diploid parthenogenetic preimplantation embryos. Dev Biol 2001; 235:343-50; PMID:11437441; http://dx.doi.org/10.1006/dbio.2001.0295
  • Takagi N, Sasaki M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 1975; 256:640-2; PMID:1152998; http://dx.doi.org/10.1038/256640a0
  • Calabrese JM, Sun W, Song L, Mugford JW, Williams L, Yee D, Starmer J, Mieczkowski P, Crawford GE, Magnuson T. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 2012; 151:951-63; PMID:23178118; http://dx.doi.org/10.1016/j.cell.2012.10.037
  • Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010; 466:1129-33; PMID:20639862; http://dx.doi.org/10.1038/nature09303
  • Iqbal K, Jin SG, Pfeifer GP, Szabo PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 2011; 108:3642-7; PMID:21321204; http://dx.doi.org/10.1073/pnas.1014033108
  • Sochalska M, Tuzlak S, Egle A, Villunger A. Lessons from gain- and loss-of-function models of pro-survival Bcl2 family proteins: implications for targeted therapy. FEBS J 2015; 282:834-49; PMID:25559680; http://dx.doi.org/10.1111/febs.13188

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.