836
Views
11
CrossRef citations to date
0
Altmetric
Report

In vitro effects of tetraiodothyroacetic acid combined with X-irradiation on basal cell carcinoma cells

, , &
Pages 367-373 | Received 20 Apr 2016, Accepted 30 Nov 2016, Published online: 31 Jan 2017

References

  • Miller SJ. Biology of basal cell carcinoma (Part I). J Am Acad Dermatol 1991; 24:1-13; PMID:1999506
  • Miller SJ. Biology of basal cell carcinoma (Part II). J Am Acad Dermatol 1991; 24:161-75; PMID:2007661
  • Morley M, Finger PT, Perlin M, Weiselberg LR, DeBlasio DS. Cis-platinum chemotherapy for ocular basal cell carcinoma. Br J Ophthalmol 1991; 75:407-10; PMID:1854693
  • Lacour JP. Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms. Br J Dermatol 2002; 146 Suppl 61:17-9; PMID:11966727
  • Wong CSM, Strange RC, Lear JT. Basal cell carcinoma. Br Med J 2003; 327:794-8
  • Festa-Neto C, Maria D. Prognostic factors correlation between the cell cycle phases and apoptosis in basal cell carcinoma. Open J Internal Med 2011; 1:99-104
  • Colmont CS, Ketah AB, Errington RJ, Reed SH, Udey MC, Patel GK. Human basal cell carcinoma tumor-initiating cells are resistant to etoposide. J Invest Dermatol 2014; 134:867-70; PMID:24025552; http://dx.doi.org/10.1038/jid.2013.377
  • de Gruijl FR, Sterenborg HJ, Forbes PD, Davies RE, Cole C, Kelfkens G, van Weelden H, Slaper H, van der Leun JC. Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 1993; 53:53-60; PMID:8416751
  • van Ruth S, Jansman FG, Sanders CJ. Total body topical 5-fluorouracil for extensive non-melanoma skin cancer. Pharm World Sci 2006; 28:159-62; http://dx.doi.org/10.1007/s11096-006-9030-x
  • Neudorfer M, Merimsky O, Lazar M, Geyer O. Cisplatin and doxorubicin for invasive basal cell carcinoma of the eyelids. Ann Ophthalmol 1993; 25:11-3; PMID:8427483
  • Hadley G, Derry S, Moore RA. Imiquimod for actinic keratosis: systematic review and meta-analysis. J Invest Dermatol 2006; 126:1251-5; PMID:16557235; http://dx.doi.org/10.1038/sj.jid.5700264
  • Hunter RD, Pereira DT, Pointon RC. Megavoltage electron beam therapy in the treatment of basal and squamous cell carcinomata of the pinna. Clin Radiol 1982; 33:341-5; PMID:6804153
  • Lovett RD, Perez CA, Shapiro SJ, Garcia DM. External irradiation of epithelial skin cancer. Int J Radiat Oncol Biol Phys 1990; 19:235-42; PMID:2394605
  • Veness MJ, Chong L, Tiver K, Gebski V. Basal cell carcinoma of the nose: an Australian and New Zealand radiation oncology patterns-of-practice study. J Med Imaging Radiat Oncol 2008; 52:382-93; PMID:18811764; http://dx.doi.org/10.1111/j.1440-1673.2008.01974.x
  • Cole A. Absorption of 20-eV to 50,000-eV electron beams in air and plastic. Radiat Res 1969; 38:7-33; PMID:5777999
  • Myers R. Electron affinity and ionization potential. J Inorg Nucl Chem 1981; 43:3083-4
  • Wedlund CS, Gronoff G, Lilensten J, Menager H, Barthelemy M. Comprehensive calculation of the energy per ion pair or W values for five major planetary upper atmospheres. Ann Geophys-Germany 2011; 29:187-95
  • Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ. Integrin αVβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005; 146:2864-71; PMID:15802494; http://dx.doi.org/10.1210/en.2005-0102
  • Cody V, Davis PJ, Davis FB. Molecular modeling of the thyroid hormone interactions with alpha v beta 3 integrin. Steroids 2007; 72:165-70; PMID:17166537; http://dx.doi.org/10.1016/j.steroids.2006.11.008
  • Hercbergs A, Davis PJ, Davis FB, Ciesielski MJ, Leith JT. Radiosensitization of GL261 glioma cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 2009; 8:2586-91; PMID:19597333; http://dx.doi.org/10.4161/cc.8.16.9328
  • Hercbergs AH, Lin HY, Davis FB, Davis PJ, Leith JT. Radiosensitization and production of DNA double-strand breaks in U87MG brain tumor cells induced by tetraiodothyroacetic acid (tetrac). Cell Cycle 2011; 10:352-7; PMID:21212737; http://dx.doi.org/10.4161/cc.10.2.14641
  • Cucinotta FA, Pluth JM, Anderson JA, Harper JV, O'Neill P. Biochemical kinetics model of DSB repair and induction of gamma-H2AX foci by non-homologous end joining. Radiat Res 2008; 169:214-22; PMID:18220463; http://dx.doi.org/10.1667/RR1035.1
  • Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. GammaH2AX and cancer. Nat Rev Cancer 2008; 8:957-67; PMID:19005492; http://dx.doi.org/10.1038/nrc2523
  • Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 2010; 9:662-9; PMID:20139725; http://dx.doi.org/10.4161/cc.9.4.10764
  • Taleei R, Girard PM, Sankaranarayanan K, Nikjoo H. The non-homologous end-joining (NHEJ) mathematical model for the repair of double-strand breaks: II. Application to damage induced by ultrasoft X rays and low-energy electrons. Radiat Res 2013; 179:540-8; PMID:23560631; http://dx.doi.org/10.1667/RR3124.1
  • Taleei R, Nikjoo H. The non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks: I. A mathematical model. Radiat Res 2013; 179:530-9; PMID:23560635; http://dx.doi.org/10.1667/RR3123.1
  • Ryan JM. Effect of different fetal bovine serum concentrations on the replicative life span of cultured chick cells. In Vitro 1979; 15:895-9; PMID:540916
  • Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z, Neradil J, Tichy B, Dvorakova D, Pospisilova S, Hampl A, et al. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 2009; 27:1847-57; PMID:19544431; http://dx.doi.org/10.1002/stem.128
  • Kuhn H, Kopff C, Konrad J, Riedel A, Gessner C, Wirtz H. Influence of basic fibroblast growth factor on the proliferation of non-small cell lung cancer cell lines. Lung Cancer 2004; 44:167-74; PMID:15084381; http://dx.doi.org/10.1016/j.lungcan.2003.11.005
  • Imokawa G, Kobayasi T, Miyagishi M. Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes. Cross-talk via trans-activation of the tyrosine kinase c-kit receptor. J Biol Chem 2000; 275:33321-8; PMID:10921922; http://dx.doi.org/10.1074/jbc.M004346200
  • Brenner DJ, Hlatky LR, Hahnfeldt PJ, Huang Y, Sachs RK. The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat Res 1998; 150:83-91; PMID:9650605
  • Nikjoo H, O'Neill P, Wilson WE, Goodhead DT. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat Res 2001; 156:577-83; PMID:11604075
  • Moulder JE, Rockwell S. Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys 1984; 10:695-712; PMID:6735758
  • Lin HY, Landersdorfer CB, London D, Meng R, Lim CU, Lin C, Lin S, Tang HY, Brown D, Van Scoy B, et al. Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput Biol 2011; 7:e1001073; PMID:21304935; http://dx.doi.org/10.1371/journal.pcbi.1001073
  • Malaise EP, Fertil B, Deschavanne PJ, Chavaudra N, Brock WA. Initial slope of radiation survival curves is characteristic of the origin of primary and established cultures of human tumor cells and fibroblasts. Radiat Res 1987; 111:319-33; PMID:3628719
  • Peters LJ. The ESTRO Regaud lecture. Inherent radiosensitivity of tumor and normal tissue cells as a predictor of human tumor response. Radiother Oncol 1990; 17:177-90; PMID:2181561
  • Warenius HM, Britten RA, Peacock JH. The relative cellular radiosensitivity of 30 human in vitro cell lines of different histological type to high LET 62.5 MeV (p–>Be+) fast neutrons and 4 MeV photons. Radiother Oncol 1994; 30:83-9; PMID:8153385
  • Biade S, Stobbe CC, Chapman JD. The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles. Radiat Res 1997; 147:416-21; PMID:9092920
  • Kim HS, Kim SC, Kim SJ, Park CH, Jeung HC, Kim YB, Ahn JB, Chung HC, Rha SY. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells. BMC Genomics 2012; 13:348; PMID:22846430; http://dx.doi.org/10.1186/1471-2164-13-348
  • Saczko J, Gebarowska E, Zabel M. Immunocytochemical evaluation of reorganisation of keratinocyte cytoskeleton induced by change in Ca2+ concentration in culture medium. Folia Morphol 2000; 59:247-51; PMID:11107695
  • Barbieri F, Bajetto A, Stumm R, Pattarozzi A, Porcile C, Zona G, Dorcaratto A, Ravetti JL, Minuto F, Spaziante R, et al. Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas. Clin Cancer Res 2008; 14:5022-32; PMID:18698020; http://dx.doi.org/10.1158/1078-0432.CCR-07-4717
  • Huang YC, Hsiao YC, Chen YJ, Wei YY, Lai TH, Tang CH. Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kappa B-dependent pathway in human lung cancer cells. Biochem Pharmacol 2007; 74:1702-12; PMID:17904532; http://dx.doi.org/10.1016/j.bcp.2007.08.025
  • Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 2011; 51:99-115; PMID:20868274; http://dx.doi.org/10.1146/annurev-pharmtox-010510-100512
  • Davis PJ, Mousa SA, Cody V, Tang HY, Lin HY. Small molecule hormone or hormone-like ligands of integrin αVβ3: implications for cancer cell behavior. Horm Cancer 2013; 4:335-42; http://dx.doi.org/10.1007/s12672-013-0156-8
  • Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 2016; 12:111-21; PMID:26668118; http://dx.doi.org/10.1038/nrendo.2015.205
  • Jane EP, Pollack IF. Enzastaurin induces H2AX phosphorylation to regulate apoptosis via MAPK signalling in malignant glioma cells. Eur J Cancer 2010; 46:412-9; PMID:19913408; http://dx.doi.org/10.1016/j.ejca.2009.10.014
  • Kiefer J. Target theory and survival curves. J Theor Biol 1971; 30:307-17; PMID:5108210
  • Nomiya T. Discussions on target theory: past and present. J Radiat Res 2013; 54:1161-3; PMID:23732771; http://dx.doi.org/10.1093/jrr/rrt075
  • Chadwick KH, Leenhouts HP. The Molecular Theory of Radiation Biology. New York: Springer-Verlag, 1981
  • Sachs RK, Brenner DJ. The mechanistic basis of the linear-quadratic formalism. Med Phys 1998; 25:2071-3; PMID:9800717; http://dx.doi.org/10.1118/1.598431
  • Ohnishi T, Mori E, Takahashi A. DNA double-strand breaks: Their production, recognition, and repair in eukaryotes. Mutat Res 2009; 669:8-12; PMID:19576233; http://dx.doi.org/10.1016/j.mrfmmm.2009.06.010
  • Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM. Characteristics of gamma-H2AX foci at DNA double strand breaks sites. Biochem Cell Biol 2003; 81:123-9; PMID:12897845; http://dx.doi.org/10.1139/o03-042
  • Boker W, Iliakis G. Computational methods for analysis of foci: Validation for radiation-induced gamma-H2AX foci in human cells. Radiat Res 2006; 165:113-24; PMID:16392969
  • Chase G, Rabinowitz J. Principles of Radioisotope Methodology. Minneapolis, Minnesota: Burger Press, 1968