4,096
Views
72
CrossRef citations to date
0
Altmetric
Extra View

Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation

&
Pages 399-405 | Received 21 Dec 2016, Accepted 05 Jan 2017, Published online: 10 Feb 2017

References

  • Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 2015; 16:239-53; PMID: 25748931; http://dx.doi.org/10.1016/j.stem.2015.02.019
  • Bianco P, Robey PG. Skeletal stem cells. Development 2015; 142:1023-7; PMID: 25758217; http://dx.doi.org/10.1242/dev.102210
  • Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, Sanchez-Cabo F, Mendez-Ferrer S. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. ELife 2014; 3:e03696; PMID: 25255216; http://dx.doi.org/10.7554/eLife.03696
  • Ono N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol 2014; 16:1157-67; PMID: 25419849; http://dx.doi.org/10.1038/ncb3067
  • Barrallo-Gimeno A, Nieto MA. Evolutionary history of the Snail/Scratch superfamily. Trends Genet 2009; 25:248-52; PMID: 19427053; http://dx.doi.org/10.1016/j.tig.2009.04.001
  • Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013; 342:1234850; PMID: 24202173; http://dx.doi.org/10.1126/science.1234850
  • Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell 2016; 166:21-45; PMID: 27368099; http://dx.doi.org/10.1016/j.cell.2016.06.028
  • Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16:488-94; PMID: 24875735; http://dx.doi.org/10.1038/ncb2976
  • Ni T, Li XY, Lu N, An T, Liu ZP, Fu R, Lv WC, Zhang YW, Xu XJ, Grant Rowe R, et al. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 2016; 18:1221-32; PMID: 27749822; http://dx.doi.org/10.1038/ncb3425
  • Alba-Castellon L, Batlle R, Franci C, Fernandez-Acenero MJ, Mazzolini R, Pena R, Loubat J, Alameda F, Rodriguez R, Curto J, et al. Snail1 expression is required for sarcomagenesis. Neoplasia 2014; 16:413-21; PMID: 24947186; http://dx.doi.org/10.1016/j.neo.2014.05.002
  • Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M, Rowe RG, Weiss SJ, Lopez-Novoa JM, Nieto MA. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 2015; 21:989-97; PMID: 26236989; http://dx.doi.org/10.1038/nm.3901
  • Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 2015; 21:998-1009; PMID: 26236991; http://dx.doi.org/10.1038/nm.3902
  • Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zurrer-Hardi U, Bell G, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148:1015-28; PMID: 22385965; http://dx.doi.org/10.1016/j.cell.2012.02.008
  • Soleimani VD, Yin H, Jahani-Asl A, Ming H, Kockx CE, van Ijcken WF, Grosveld F, Rudnicki MA. Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis. Mol Cell 2012; 47:457-68; PMID: 22771117; http://dx.doi.org/10.1016/j.molcel.2012.05.046
  • Lin Y, Li XY, Willis AL, Liu C, Chen G, Weiss SJ. Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Nat Commun 2014; 5:3070; PMID: 24401905
  • Desgrosellier JS, Lesperance J, Seguin L, Gozo M, Kato S, Franovic A, Yebra M, Shattil SJ, Cheresh DA. Integrin alphavbeta3 drives Slug activation and stemness in the pregnant and neoplastic mammary gland. Dev Cell 2014; 30:295-308; PMID: 25117682; http://dx.doi.org/10.1016/j.devcel.2014.06.005
  • Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol 2014; 16:268-80; PMID: 24561623; http://dx.doi.org/10.1038/ncb2910
  • Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, Weinberg RA. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 2015; 525:256-60; PMID: 26331542; http://dx.doi.org/10.1038/nature14897
  • Horvay K, Jarde T, Casagranda F, Perreau VM, Haigh K, Nefzger CM, Akhtar R, Gridley T, Berx G, Haigh JJ, et al. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J 2015; 34:1319-35; PMID: 25759216; http://dx.doi.org/10.15252/embj.201490881
  • Goldman O, Valdes VJ, Ezhkova E, Gouon-Evans V. The mesenchymal transcription factor SNAI-1 instructs human liver specification. Stem Cell Res 2016; 17:62-8; PMID: 27240252; http://dx.doi.org/10.1016/j.scr.2016.05.007
  • Javaid S, Zhang J, Anderssen E, Black JC, Wittner BS, Tajima K, Ting DT, Smolen GA, Zubrowski M, Desai R, et al. Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Rep 2013; 5:1679-89; PMID: 24360956; http://dx.doi.org/10.1016/j.celrep.2013.11.034
  • Loubat-Casanovas J, Pena R, Gonzalez N, Alba-Castellon L, Rosell S, Franci C, Navarro P, Garcia de Herreros A. Snail1 is required for the maintenance of the pancreatic acinar phenotype. Oncotarget 2016; 7:4468-82; PMID: 26735179
  • Tang Y, Feinberg T, Keller ET, Li XY, Weiss SJ. Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol 2016; 18:917-29; PMID: 27479603; http://dx.doi.org/10.1038/ncb3394
  • Rowe RG, Li XY, Hu Y, Saunders TL, Virtanen I, Garcia de Herreros A, Becker KF, Ingvarsen S, Engelholm LH, Bommer GT, et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J Cell Biol 2009; 184:399-408; PMID: 19188491; http://dx.doi.org/10.1083/jcb.200810113
  • Batlle R, Alba-Castellon L, Loubat-Casanovas J, Armenteros E, Franci C, Stanisavljevic J, Banderas R, Martin-Caballero J, Bonilla F, Baulida J, et al. Snail1 controls TGF-beta responsiveness and differentiation of mesenchymal stem cells. Oncogene 2013; 32:3381-9; PMID: 22869142; http://dx.doi.org/10.1038/onc.2012.342
  • de Frutos CA, Dacquin R, Vega S, Jurdic P, Machuca-Gayet I, Nieto MA. Snail1 controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO J 2009; 28:686-96; PMID: 19197242; http://dx.doi.org/10.1038/emboj.2009.23
  • Park SJ, Jung SH, Jogeswar G, Ryoo HM, Yook JI, Choi HS, Rhee Y, Kim CH, Lim SK. The transcription factor snail regulates osteogenic differentiation by repressing Runx2 expression. Bone 2010; 46:1498-507; PMID: 20215006; http://dx.doi.org/10.1016/j.bone.2010.02.027
  • de Frutos CA, Vega S, Manzanares M, Flores JM, Huertas H, Martinez-Frias ML, Nieto MA. Snail1 is a transcriptional effector of FGFR3 signaling during chondrogenesis and achondroplasias. Dev Cell 2007; 13:872-83; PMID: 18061568; http://dx.doi.org/10.1016/j.devcel.2007.09.016
  • Lisignoli G, Manferdini C, Lambertini E, Zini N, Angelozzi M, Gabusi E, Gambari L, Penolazzi L, Lolli A, Facchini A, et al. Chondrogenic potential of Slug-depleted human mesenchymal stem cells. Tissue Eng Part A 2014; 20:2795-805; PMID: 24712489; http://dx.doi.org/10.1089/ten.tea.2013.0343
  • Chen Y, Gridley T. Compensatory regulation of the Snai1 and Snai2 genes during chondrogenesis. J Bone Miner Res 2013; 28:1412-21; PMID: 23322385; http://dx.doi.org/10.1002/jbmr.1871
  • Chen Y, Gridley T. The SNAI1 and SNAI2 proteins occupy their own and each other's promoter during chondrogenesis. Biochem Biophys Res Commun 2013; 435:356-60; PMID: 23665016; http://dx.doi.org/10.1016/j.bbrc.2013.04.086
  • Murray SA, Oram KF, Gridley T. Multiple functions of Snail family genes during palate development in mice. Development 2007; 134:1789-97; PMID: 17376812; http://dx.doi.org/10.1242/dev.02837
  • Wu ZQ, Rowe RG, Lim KC, Lin Y, Willis A, Tang Y, Li XY, Nor JE, Maillard I, Weiss SJ. A Snail1/Notch1 signalling axis controls embryonic vascular development. Nat Commun 2014; 5:3998; PMID: 24894949
  • Zander MA, Cancino GI, Gridley T, Kaplan DR, Miller FD. The Snail transcription factor regulates the numbers of neural precursor cells and newborn neurons throughout mammalian life. PLoS One 2014; 9:e104767; PMID: 25136812; http://dx.doi.org/10.1371/journal.pone.0104767
  • Perez-Mancera PA, Bermejo-Rodriguez C, Gonzalez-Herrero I, Herranz M, Flores T, Jimenez R, Sanchez-Garcia I. Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet 2007; 16:2972-86; PMID: 17905753; http://dx.doi.org/10.1093/hmg/ddm278
  • Sun C, Jiang L, Liu Y, Shen H, Weiss SJ, Zhou Y, Rui L. Adipose Snail1 regulates lipolysis and lipid partitioning by suppressing adipose triacylglycerol lipase expression. Cell Rep 2016; 17:2015-27; PMID: 27851965; http://dx.doi.org/10.1016/j.celrep.2016.10.070
  • Gingold JA, Fidalgo M, Guallar D, Lau Z, Sun Z, Zhou H, Faiola F, Huang X, Lee DF, Waghray A, et al. A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Mol Cell 2014; 56:140-52; PMID: 25240402; http://dx.doi.org/10.1016/j.molcel.2014.08.014
  • Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev 2014; 94:1287-312; PMID: 25287865; http://dx.doi.org/10.1152/physrev.00005.2014
  • Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 2014; 141:1614-26; PMID: 24715453; http://dx.doi.org/10.1242/dev.102376
  • Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 2014; 15:642-56; PMID: 24825474
  • Pan D. The Hippo signaling pathway in development and cancer. Dev Cell 2010; 19:491-505; PMID: 20951342; http://dx.doi.org/10.1016/j.devcel.2010.09.011
  • Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015; 163:811-28; PMID: 26544935; http://dx.doi.org/10.1016/j.cell.2015.10.044
  • Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell 2016; 29:783-803; PMID: 27300434; http://dx.doi.org/10.1016/j.ccell.2016.05.005
  • Panciera T, Azzolin L, Fujimura A, Di Biagio D, Frasson C, Bresolin S, Soligo S, Basso G, Bicciato S, Rosato A, et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 2016; 19(6):725-737; PMID: 27641305
  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474:179-83; PMID: 21654799; http://dx.doi.org/10.1038/nature10137
  • Tang Y, Rowe RG, Botvinick EL, Kurup A, Putnam AJ, Seiki M, Weaver VM, Keller ET, Goldstein S, Dai J, et al. MT1-MMP-dependent control of skeletal stem cell commitment via a beta1-integrin/YAP/TAZ signaling axis. Dev Cell 2013; 25:402-16; PMID: 23685250; http://dx.doi.org/10.1016/j.devcel.2013.04.011
  • Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 2013; 110:13839-44; PMID: 23918388; http://dx.doi.org/10.1073/pnas.1313192110
  • Finch-Edmondson ML, Strauss RP, Passman AM, Sudol M, Yeoh GC, Callus BA. TAZ protein accumulation is negatively regulated by YAP abundance in mammalian cells. J Biol Chem 2015; 290:27928-38; PMID: 26432639
  • Reginensi A, Hoshi M, Boualia SK, Bouchard M, Jain S, McNeill H. YAP and TAZ are required for Ret-dependent urinary tract morphogenesis. Development 2015; 142:2696-703; PMID: 26243870; http://dx.doi.org/10.1242/dev.122044
  • Miesfeld JB, Gestri G, Clark BS, Flinn MA, Poole RJ, Bader JR, Besharse JC, Wilson SW, Link BA. YAP and TAZ regulate retinal pigment epithelial cell fate. Development 2015; 142:3021-32; PMID: 26209646; http://dx.doi.org/10.1242/dev.119008
  • Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Wculek SK, Cordero J, Tan EH, Ridgway R, Brunton VG, et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 2016; 143:1674-87; PMID: 26989177; http://dx.doi.org/10.1242/dev.133728
  • Poitelon Y, Lopez-Anido C, Catignas K, Berti C, Palmisano M, Williamson C, Ameroso D, Abiko K, Hwang Y, Gregorieff A, et al. YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 2016; 19:879-87; PMID: 27273766; http://dx.doi.org/10.1038/nn.4316
  • Wang J, Xiao Y, Hsu CW, Martinez-Traverso IM, Zhang M, Bai Y, Ishii M, Maxson RE, Olson EN, Dickinson ME, et al. YAP and TAZ play a crucial role in neural crest-derived craniofacial development. Development 2016; 143:504-15; PMID: 26718006; http://dx.doi.org/10.1242/dev.126920
  • Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009; 25:629-48; PMID: 19575648; http://dx.doi.org/10.1146/annurev.cellbio.042308.113308
  • Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 2016; 92:41-51; PMID: 27012163; http://dx.doi.org/10.1016/j.diff.2016.02.005
  • Meyer MB, Benkusky NA, Sen B, Rubin J, Pike JW. Epigenetic plasticity drives adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells. J Biol Chem 2016; 291:17829-47; PMID: 27402842; http://dx.doi.org/10.1074/jbc.M116.736538
  • Tsutsumi R, Masoudi M, Takahashi A, Fujii Y, Hayashi T, Kikuchi I, Satou Y, Taira M, Hatakeyama M. YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Dev Cell 2013; 26:658-65; PMID: 24035415; http://dx.doi.org/10.1016/j.devcel.2013.08.013
  • Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, et al. beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 2012; 151:1457-73; PMID: 23245941; http://dx.doi.org/10.1016/j.cell.2012.11.026
  • Wang W, Li X, Huang J, Feng L, Dolinta KG, Chen J. Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics 2014; 13:119-31; PMID: 24126142; http://dx.doi.org/10.1074/mcp.M113.030049
  • Pioli PD, Chen X, Weis JJ, Weis JH. Fatal autoimmunity results from the conditional deletion of Snai2 and Snai3. Cell Immunol 2015; 295:1-18; PMID: 25732600; http://dx.doi.org/10.1016/j.cellimm.2015.02.009
  • Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 2005; 309:1074-8; PMID: 16099986; http://dx.doi.org/10.1126/science.1110955
  • Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 2015; 17:1218-27; PMID: 26258633; http://dx.doi.org/10.1038/ncb3216
  • Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, Agarinis C, Schmelzle T, Bouwmeester T, Schubeler D, et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet 2015; 11:e1005465; PMID: 26295846; http://dx.doi.org/10.1371/journal.pgen.1005465
  • Galli GG, Carrara M, Yuan WC, Valdes-Quezada C, Gurung B, Pepe-Mooney B, Zhang T, Geeven G, Gray NS, de Laat W, et al. YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol Cell 2015; 60:328-37; PMID: 26439301; http://dx.doi.org/10.1016/j.molcel.2015.09.001
  • Liu X, Li H, Rajurkar M, Li Q, Cotton JL, Ou J, Zhu LJ, Goel HL, Mercurio AM, Park JS, et al. TEAD and AP1 coordinate transcription and motility. Cell Rep 2016; 14:1169-80; PMID: 26832411; http://dx.doi.org/10.1016/j.celrep.2015.12.104
  • Chan CK, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, Tevlin R, Seita J, Vincent-Tompkins J, Wearda T, et al. Identification and specification of the mouse skeletal stem cell. Cell 2015; 160:285-98; PMID: 25594184; http://dx.doi.org/10.1016/j.cell.2014.12.002
  • Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 2015; 160:269-84; PMID: 25594183; http://dx.doi.org/10.1016/j.cell.2014.11.042
  • Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 2016; 18:782-96; PMID: 27053299; http://dx.doi.org/10.1016/j.stem.2016.02.015
  • Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, Perez MG, Kosaraju R, Hu MS, Walmsley GG, et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 2014; 4:7144; PMID: 25413454; http://dx.doi.org/10.1038/srep07144
  • Deng Y, Wu A, Li P, Li G, Qin L, Song H, Mak KK. YAP1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Rep 2016; 14:2224-37; PMID: 26923596; http://dx.doi.org/10.1016/j.celrep.2016.02.021
  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3:301-13; PMID: 18786417; http://dx.doi.org/10.1016/j.stem.2008.07.003
  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449:557-63; PMID: 17914389; http://dx.doi.org/10.1038/nature06188
  • Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015; 16:51-66; PMID: 25465115; http://dx.doi.org/10.1016/j.stem.2014.11.004
  • Li HJ, Reinhardt F, Herschman HR, Weinberg RA. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2012; 2:840-55; PMID: 22763855; http://dx.doi.org/10.1158/2159-8290.CD-12-0101
  • Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011; 19:257-72; PMID: 21316604; http://dx.doi.org/10.1016/j.ccr.2011.01.020
  • Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, Cossu G, Serafini M, Sampaolesi M, Tagliafico E, et al. No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports 2016; 6:897-913; PMID: 27304917; http://dx.doi.org/10.1016/j.stemcr.2016.05.011
  • Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3:778-84; PMID: 11533656; http://dx.doi.org/10.1038/ncb0901-778
  • Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, Herr R, Brabletz S, Stemmler MP, Brabletz T. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun 2016; 7:10498; PMID: 26876920; http://dx.doi.org/10.1038/ncomms10498
  • Oram KF, Carver EA, Gridley T. Slug expression during organogenesis in mice. Anat Rec A Discov Mol Cell Evol Biol 2003; 271:189-91; PMID: 12552634; http://dx.doi.org/10.1002/ar.a.10027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.