1,153
Views
8
CrossRef citations to date
0
Altmetric
Reports

Arachidonic acid and Docosahexanoic acid enhance platelet formation from human apheresis-derived CD34+ cells

, , , &
Pages 979-990 | Received 13 Jan 2017, Accepted 22 Mar 2017, Published online: 20 Apr 2017

References

  • Chang Y, Bluteau D, Debili N, Vainchenker W. From hematopoietic stem cells to platelets. J Thromb Haemost 2007; 5 Suppl 1:318-27. Review; PMID:17635743; http://dx.doi.org/10.1111/j.1538-7836.2007.02472.x
  • Italiano JE Jr. Unraveling mechanisms that control platelet production. Semin Thromb Hemost 2013; 39(1):15-24; PMID:23266965
  • Thon JN, Italiano JE. Platelet formation. Semin Hematol 2010; 47(3):220-6; PMID:20620432; http://dx.doi.org/10.1053/j.seminhematol.2010.03.005
  • Leslie M. Cell biology. Beyond clotting: the powers of platelets. Science 2010; 328(5978):562-4; PMID:20430990; http://dx.doi.org/10.1126/science.328.5978.562
  • Verheul HM, Hoekman K, Luykx-de Bakker S, Eekman CA, Folman CC, Broxterman HJ, Pinedo HM. Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997; 3(12 Pt 1):2187-90; PMID:9815613
  • Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. NatRev Immunol 2011; 11(4):264-74; http://dx.doi.org/10.1038/nri2956
  • Peeters K, Stassen JM, Collen D, Van Geet C, Freson K. Emerging treatments for thrombocytopenia: increasing platelet production. Drug Discov Today 2008; 13(17–18):798-806; PMID:18602017; http://dx.doi.org/10.1016/j.drudis.2008.06.002
  • Lambert MP, Sullivan SK, Fuentes R, French DL, Poncz M. Challenges and promises for the development of donor-independent platelet transfusions. Blood 2013; 121(17):3319-24; PMID:23321255; http://dx.doi.org/10.1182/blood-2012-09-455428
  • Falcieri E, Bassini A, Pierpaoli S, Luchetti F, Zamai L, Vitale M, Guidotti L, Zauli G. Ultrastructural characterization of maturation, platelet release, and senescence of human cultured megakaryocytes. Anat Rec 2000; 258(1):90-9; PMID:10603452; http://dx.doi.org/10.1002/(SICI)1097-0185(20000101)258:1%3c90::AID-AR10%3e3.0.CO;2-G
  • Nagler A, Eldor A, Naparstek E, Mumcuoglu M, Slavin S, Deutsch VR. Ex vivo expansion of megakaryocyte precursors by preincubation of marrow allografts with interleukin-3 and granulocyte-macrophage colony-stimulating factor in vitro. Exp Hematol 1995; 23(12):1268-74; PMID:7589281
  • Schattner M, Lefebvre P, Mingolelli SS, Goolsby CL, Rademaker A, White JG, Foster D, Green D, Cohen I. Thrombopoietin-stimulated ex vivo expansion of human bone marrow megakaryocytes. Stem Cells 1996; 14(2):207-14; PMID:8991540; http://dx.doi.org/10.1002/stem.140207
  • Li X, Chen FP, Liu J, Wu XH, Jiang TB, Tang XY. In vitro differentiation into megakaryocytes and generation of platelets from CD34+ cells of umbilical cord blood. Zhong Nan Da Xue Bao Yi Xue Ban 2006; 31(5):776-81. Chinese
  • Bertolini F, Battaglia M, Pedrazzoli P, Da Prada GA, Lanza A, Soligo D, Caneva L, Sarina B, Murphy S, Thomas T, et al. Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood 1997; 89(8):2679-88; PMID:9108385
  • Lefebvre P, Winter JN, Meng Y, Cohen I. Ex vivo expansion of early and late megakaryocyte progenitors. J Hematother Stem Cell Res 2000; 9(6):913-21; PMID:11177605; http://dx.doi.org/10.1089/152581600750062363
  • Maurer AM, Liu Y, Caen JP, Han ZC. Ex vivo expansion of megakaryocytic cells. Int J Hematol 2000; 71(3):203-10. Review; PMID:10846824
  • Wendling F. Thrombopoietin: its role from early hematopoiesis to platelet production. Haematologica 1999; 84(2):158-66. Review; PMID:10091415
  • Cramer EM, Norol F, Guichard J, Breton-Gorius J, Vainchenker W, Massé JM, Debili N. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood 1997; 89(7):2336-46; PMID:9116277
  • Lazzari L, Henschler R, Lecchi L, Rebulla P, Mertelsmann R, Sirchia G. Interleukin-6 and interleukin-11 act synergistically with thrombopoietin and stem cell factor to modulate ex vivo expansion of human CD41+ and CD61+ megakaryocytic cells. Haematologica 2000; 85(1):25-30; PMID:10629587
  • Terasawa R, Fukushi Y, Monzen S, Miura T, Takahashi K, Yoshizawa A, Kashiwakura I. The promoting activity on human megakaryocytopoiesis and thrombopoiesis by liquid crystal-related compounds. Biol Pharm Bull 2009; 32(6):976-81; PMID:19483301; http://dx.doi.org/10.1248/bpb.32.976
  • Giammona LM, Fuhrken PG, Papoutsakis ET, Miller WM. Nicotinamide (vitamin B3) increases the polyploidisation and proplatelet formation of cultured primary human megakaryocytes. Br J Haematol 2006; 135(4):554-66; PMID:17054670; http://dx.doi.org/10.1111/j.1365-2141.2006.06341.x
  • Feng Y, Zhang L, Xiao ZJ, Li B, Liu B, Fan CG, Yuan XF, Han ZC. An effective and simple expansion system for megakaryocyte progenitor cells using a combination of heparin with thrombopoietin and interleukin-11. Exp Hematol 2005; 33(12):1537-43; PMID:16338497; http://dx.doi.org/10.1016/j.exphem.2005.08.010
  • Kashiwakura I, Takahashi K, Monzen S, Nakamura T, Takagaki K. Ex vivo expansions of megakaryocytopoiesis from placental and umbilical cord blood CD34(+) cells in serum-free culture supplemented with proteoglycans extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of whale. Life Sci 2008; 82(19–20):1023-31; PMID:18407295; http://dx.doi.org/10.1016/j.lfs.2008.03.001
  • O'Brien JJ, Baglole CJ, Garcia-Bates TM, Blumberg N, Francis CW, Phipps RP. 15-deoxy-Delta12, 14 prostaglandin J2-induced heme oxygenase-1 in megakaryocytes regulates thrombopoiesis. J Thromb Haemost 2009; 7(1):182-9; PMID:18983509; http://dx.doi.org/10.1111/j.1538-7836.2008.03191.x
  • Balduini A, Pallotta I, Malara A, Lova P, Pecci A, Viarengo G, Balduini CL, Torti M. Adhesive receptors, extracellular proteins and myosin IIA orchestrate proplatelet formation by human megakaryocytes. J Thromb Haemost 2008; 6(11):1900-7; PMID:18752571; http://dx.doi.org/10.1111/j.1538-7836.2008.03132.x
  • Harris W. Omega-6 and omega-3 fatty acids: partners in prevention. Curr OpinClin Nutr Metab Care 2010; 13(2):125-9; http://dx.doi.org/10.1097/MCO.0b013e3283357242
  • Langelier B, Linard A, Bordat C Lavialle M, Heberden C. Long chain-polyunsaturated fatty acids modu-late membrane phospholipid composition and protein localization in lipid rafts of neu-ral stem cell cultures. J Cell Biochem 2010; 110:1356-64; PMID:20564231; http://dx.doi.org/10.1002/jcb.22652
  • Lefils J, Géloën A, Vidal H, Lagarde M, Bernoud-Hubac N. Dietary DHA: time course of tissue uptake and effects on cytokine secretion in mice. Br J Nutr 2010; 104(9):1304-12; PMID:20487585; http://dx.doi.org/10.1017/S0007114510002102
  • Krishnamurti C, Stewart MW, Cutting MA, Rothwell SW. Assessment of omega-fatty-acid-supplemented human platelets for potential improvement in long-term storage. Thromb Res 2002; 105(2):139-45; PMID:11958804; http://dx.doi.org/10.1016/S0049-3848(02)00009-9
  • Mutanen M, Freese R. Polyunsaturated fatty acids and platelet aggregation. Curr Opin Lipidol 1996; 7(1):14-9. Review; PMID:8925182; http://dx.doi.org/10.1097/00041433-199602000-00004
  • Kang JX, Wan JB, He C. Concise review: Regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells 2014; 32(5):1092-8. Review; PMID:24356924; http://dx.doi.org/10.1002/stem.1620
  • Lee MY, Ryu JM, Lee SH, Park JH, Han HJ. Lipid rafts play important role for maintenance of embryonic stem cell self-renewal. J Lipid Res 2010; 51(8):2082-9; PMID:20110442; http://dx.doi.org/10.1194/jlr.M001545
  • Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H, Nakauchi H. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J 2006; 25(15):3515-23; PMID:16858398; http://dx.doi.org/10.1038/sj.emboj.7601236
  • Lands B. Consequences of essential fatty acids. Nutrients 2012; 4(9):1338-57. Review; PMID:23112921; http://dx.doi.org/10.3390/nu4091338
  • Siddiqui NF, Shabrani NC, Kale VP, Limaye LS. Enhanced generation of megakaryocytes from umbilical cord blood-derived CD34(+) cells expanded in the presence of two nutraceuticals, docosahexanoic acid and arachidonic acid, as supplements to the cytokine-containing medium. Cytotherapy 2011; 13(1):114-28; PMID:20230224; http://dx.doi.org/10.3109/14653241003588858
  • Shabrani NC, Khan NF, Kale VP, Limaye LS. Polyunsaturated fatty acids confer cryoresistance on megakaryocytes generated from cord blood and also enhance megakaryocyte production from cryopreserved cord blood cells. Cytotherapy 2012; 14(3):366-80; PMID:22250991; http://dx.doi.org/10.3109/14653249.2011.649186
  • De Bruyn C, Delforge A, Martiat P, Bron D. Ex vivo expansion of megakaryocyte progenitor cells: cord blood versus mobilized peripheral blood. Stem Cells Dev 2005; 14(4):415-24; PMID:16137231; http://dx.doi.org/10.1089/scd.2005.14.415
  • Matsunaga T, Tanaka I, Kobune M, Kawano Y, Tanaka M, Kuribayashi K, Iyama S, Sato T, Sato Y, Takimoto R, et al. Ex vivo large-scale generation of human platelets from cord blood CD34+ cells. Stem Cells 2006; 24(12):2877-87; PMID:16960134; http://dx.doi.org/10.1634/stemcells.2006-0309
  • Luo Q, Song G, Zou C. A two-phase culture system for megakaryocyte differentiation of human mobilized peripheral blood CD34+ cells. Sheng Wu Yi XueGong Cheng Xue Za Zhi 2010; 27(2):373-8. Chinese
  • Simmons PJ, Robinson SN, Munsell MF, Thomas MW, Javni JA, Brouard N, Zweidler-McKay PA, Shpall EJ. Expression of a surface antigen (MA6) by peripheral blood CD34+ cells is correlated with improved platelet engraftment and May explain delayed platelet engraftment following cord blood transplantation. Stem Cells Dev 2015; 24:1066-72
  • Ivetic N, Nazi I, Karim N, Clare R, Smith JW, Moore JC, Hope KJ, Kelton JG, Arnold DM. Producing megakaryocytes from a human peripheral blood source. Transfusion 2016; 56(5):1066-74; PMID:26756864; http://dx.doi.org/10.1111/trf.13461
  • Ono Y, Wang Y, Suzuki H, Okamoto S, Ikeda Y, Murata M, Poncz M, Matsubara Y. Induction of functional platelets from mouse and human fibroblasts byp45NF-E2/Maf. Blood 2012; 120(18):3812-21; PMID:22855609; http://dx.doi.org/10.1182/blood-2012-02-413617
  • Pulecio J, Alejo-Valle O, Capellera-Garcia S, Vitaloni M, Rio P, Mejía-Ramírez E, Caserta I, Bueren JA, Flygare J, Raya A. Direct Conversion of Fibroblasts to Megakaryocyte Progenitors. Cell Rep 2016; 17(3):671-683; PMID:27732845; http://dx.doi.org/10.1016/j.celrep.2016.09.036
  • Van den Oudenrijn S, von dem Borne AE, de Haas M. Influence of medium components on ex vivo megakaryocyte expansion. J Hematother Stem Cell Res 2001; 10(1):193-200; PMID:11276373; http://dx.doi.org/10.1089/152581601750098516
  • Norol F, Vitrat N, Cramer E, Guichard J, Burstein SA, Vainchenker W, Debili N. Effects of cytokines on platelet production from blood and marrow CD34+ cells. Blood 1998; 91(3):830-43; PMID:9446643
  • Hölig K. G-CSF in Healthy Allogeneic Stem Cell Donors. Transfus Med Hemother 2013; 129(14):1901-1912; PMID:24179471; http://dx.doi.org/10.1159/000354196
  • Bernitz JM, Daniel M, Fstkchyan YS, Moore K. Granulocyte-colony stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice. Blood 2017
  • Lemoli RM, Tafuri A, Fortuna A, Petrucci MT, Ricciardi MR, Catani L, Rondelli D, Fogli M, Leopardi G, Ariola C, et al. Cycling status of CD34+ cells mobilized into peripheral blood of healthy donors by recombinant human granulocyte colony-stimulating factor. Blood 1997; 89 No 4:1189-96; PMID:9028941
  • Raslova H, Kauffmann A, Sekkaï D, Ripoche H, Larbret F, Robert T, Tronik LeRoux D, Kroemer G, Debili N, Dessen P, et al. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood 2007; 109(8):3225-34; PMID:17170127; http://dx.doi.org/10.1182/blood-2006-07-037838
  • Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, Hassan HJ. Different ploidy levels of megakaryocytes generated from peripheral or cord bloodCD34+ cells are correlated with different levels of platelet release. Blood 2002; 99(3):888-97; PMID:11806991; http://dx.doi.org/10.1182/blood.V99.3.888
  • Roberts LA, Glenn H, Hahn CS, Jacobson BS. Cdc42 and RhoA are differentially regulated during arachidonate-mediated HeLa cell adhesion. J Cell Physiol 2003; 196(1):196-205; PMID:12767056; http://dx.doi.org/10.1002/jcp.10303
  • Garcia MC, Williams J, Johnson K, Olden K, Roberts JD. Arachidonic acid stimulates formation of a novel complex containing nucleolin and RhoA. FEBS Lett 2011; 585(4):618-22; PMID:21281639; http://dx.doi.org/10.1016/j.febslet.2011.01.035
  • Perez LE, Rinder HM, Wang C, Tracey JB, Maun N, Krause DS. Xenotransplantationof immunodeficient mice with mobilized human blood CD34+ cells provides an in vivo model for human megakaryocytopoiesis and platelet production. Blood 2001; 97(6):1635-43; PMID:11238102; http://dx.doi.org/10.1182/blood.V97.6.1635
  • Tijssen MR, van Hennik PB, di Summa F, Zwaginga JJ, van der Schoot CE, Voermans C. Transplantation of human peripheral blood CD34-positive cells in combination with ex vivo generated megakaryocytes results in fast platelet formation in NOD/SCID mice. Leukemia 2008; 22(1):203-8; PMID:17943170; http://dx.doi.org/10.1038/sj.leu.2404979
  • Lam LT, Ronchini C, Norton J, Capobianco AJ, Bresnick EH. Suppression of erythroid but not megakaryocytic differentiation of human K562 erythro leukemic cells by notch-1. J Biol Chem 2000; 275(26):19676-84; PMID:10783395; http://dx.doi.org/10.1074/jbc.M002866200
  • Poirault-Chassac S, Six E, Catelain C, Lavergne M, Villeval JL, Vainchenker W, Lauret E. Notch/Delta4 signaling inhibits human megakaryocytic terminal differentiation. Blood 2010; 116(25):5670-8; PMID:20829371; http://dx.doi.org/10.1182/blood-2010-05-285957
  • Zheng C, Yang R, Han Z, Zhou B, Liang L, Lu M. TPO-independent megakaryocytopoiesis. Crit Rev Oncol Hematol 2008; 65:212-22; PMID:18093840; http://dx.doi.org/10.1016/j.critrevonc.2007.11.003
  • Cortin V, Pineault N, Garnier A. Ex vivo megakaryocyte expansion and platelet production from human cord blood stem cells. Methods Mol Biol 2009; 482:109-26; PMID:19089352
  • Sun L, Hwang WY, Aw SE. Biological characteristics of megakaryocytes: specific lineage commitment and associated disorders. Int J Biochem Cell Biol 2006; 38:1821-6; PMID:16730215; http://dx.doi.org/10.1016/j.biocel.2006.03.011
  • Mercher T, Cornejo MG, Sears C, Kindler T, Moore SA, Maillard I, Pear WS, Aster JC, Gilliland DG. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell 2008; 3:314-26; PMID:18786418; http://dx.doi.org/10.1016/j.stem.2008.07.010
  • Majka M, Ratajczak J, Villaire G, Kubiczek K, Marquez LA, Janowska-Wieczorek A, Ratajczak MZ. Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Exp Hematol 2002; 30:751-60
  • Signorello MG, Leoncini G. Effect of 2-arachidonoylglycerol on myosin light chain phosphorylation and platelet activation: The role of phosphatidylinositol 3kinase/AKT pathway. Biochimie 2014; 105:182-91; PMID:25068972; http://dx.doi.org/10.1016/j.biochi.2014.07.014
  • Roy A, Basak NP, Banerjee S. Notch1 intracellular domain increases cytoplasmicEZH2 levels during early megakaryopoiesis. Cell Death Dis 2012; 3:e380; PMID:22914328; http://dx.doi.org/10.1038/cddis.2012.119
  • Cornejo MG, Mabialah V, Sykes SM, Khandan T, Lo Celso C, Lopez CK, Rivera-Muñoz P, Rameau P, Tothova Z, Aster JC, et al. Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification. Blood 2011; 118(5):1264-73; PMID:21653327; http://dx.doi.org/10.1182/blood-2011-01-328567

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.