1,015
Views
13
CrossRef citations to date
0
Altmetric
Report

Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication

, &
Pages 1271-1287 | Received 24 Jan 2017, Accepted 22 Mar 2017, Published online: 26 Jun 2017

References

  • Muller, H. The remaking of chromosomes. Collecting net 1938; 13(198):181-95.
  • McClintock, B. The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. Proc Natl Acad Sci U S A 1942; 28(11):458-63; PMID:16578057; https://doi.org/10.1073/pnas.28.11.458
  • Blackburn, EH. Structure and function of telomeres. Nature 1991; 350(6319):569-73; PMID:1708110; https://doi.org/10.1038/350569a0
  • Carneiro, T, Khair, L, Reis, CC, Borges, V, Moser, BA, Nakamura, TM, Ferreira, MG. Telomeres avoid end detection by severing the checkpoint signal transduction pathway. Nature 2010; 467(7312):228-32; https://doi.org/10.1038/nature09353
  • Blackburn, EH, Gall, JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 1978; 120(1):33-53; PMID:642006; https://doi.org/10.1016/0022-2836(78)90294-2
  • Blackburn, EH, Greider, CW, Szostak, JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006; 12(10):1133-8; PMID:17024208; https://doi.org/10.1038/nm1006-1133
  • Shampay, J, Szostak, JW, Blackburn, EH. DNA sequences of telomeres maintained in yeast. Nature 1984; 310(5973):154-7; PMID:6330571; https://doi.org/10.1038/310154a0
  • Linger, BR, Price, CM. Conservation of telomere protein complexes: shuffling through evolution. Crit Rev Biochem Mol Biol 2009; 44(6):434-46; PMID:19839711; https://doi.org/10.3109/10409230903307329
  • Watson, JD. Origin of concatemeric T7DNA. Nature 1972; 239(94):197-201; PMID:4263504
  • Verdun, RE, Karlseder, J. Replication and protection of telomeres. Nature 2007; 447(7147):924-31; PMID:17581575; https://doi.org/10.1038/nature05976
  • Gilson, E, Geli, V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007; 8(10):825-38; PMID:17885666; https://doi.org/10.1038/nrm2259
  • Greider, CW, Blackburn, EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43(2 Pt 1):405-13; PMID:3907856; https://doi.org/10.1016/0092-8674(85)90170-9
  • Greider, CW, Blackburn, EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 1987; 51(6):887-98; PMID:3319189; https://doi.org/10.1016/0092-8674(87)90576-9
  • Fan, X, Price, CM. Coordinate regulation of G-and C strand length during new telomere synthesis. Mol Biol Cell 1997; 8(11):2145-55; PMID:9362059; https://doi.org/10.1091/mbc.8.11.2145
  • Armanios, M, Blackburn, EH. The telomere syndromes. Nat Rev Genet 2012; 13(10):693-704; PMID:22965356; https://doi.org/10.1038/nrg3246
  • Holohan, B, Wright, WE, Shay, JW. Telomeropathies: An emerging spectrum disorder. J Cell Biol 2014; 205(3):289-99; PMID:24821837; https://doi.org/10.1083/jcb.201401012
  • Borah, S, Xi, L, Zaug, AJ, Powell, NM, Dancik, GM, Cohen, SB, Costello, JC, Theodorescu, D, Cech, TR. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 2015; 347(6225):1006-10; https://doi.org/10.1126/science.1260200
  • Shay, J, Bacchetti, S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33(5):787-91; PMID:9282118; https://doi.org/10.1016/S0959-8049(97)00062-2
  • Hanahan, D, Weinberg, RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5):646-74; PMID:21376230; https://doi.org/10.1016/j.cell.2011.02.013
  • Polvi, A, Linnankivi, T, Kivelä, T, Herva, R, Keating, JP, Mäkitie, O, Pareyson, D, Vainionpää, L, Lahtinen, J, Hovatta, I, et al. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am J Hum Genet 2012; 90(3):540-9; https://doi.org/10.1016/j.ajhg.2012.02.002
  • Anderson, BH, Kasher, PR, Mayer, J, Szynkiewicz, M, Jenkinson, EM, Bhaskar, SS, Urquhart, JE, Daly, SB, Dickerson, JE, O'Sullivan, J, et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat Genet 2012; 44(3):338-42; https://doi.org/10.1038/ng.1084
  • Chen, LY, Majerska, J, Lingner, J. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev 2013; 27(19):2099-108; PMID:24115768; https://doi.org/10.1101/gad.222893.113
  • Keller, RB, Gagne, KE, Usmani, GN, Asdourian, GK, Williams, DA, Hofmann, I, Agarwal, S. CTC1 Mutations in a patient with dyskeratosis congenita. Pediatric Blood Cancer 2012; 59(2):311-4; https://doi.org/10.1002/pbc.24193
  • Gu, P, Min, JN, Wang, Y, Huang, C, Peng, T, Chai, W, Chang, S. CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J 2012; 31(10):2309-21; https://doi.org/10.1038/emboj.2012.96
  • Walne, AJ, Bhagat, T, Kirwan, M, Gitiaux, C, Desguerre, I, Leonard, N, Nogales, E, Vulliamy, T, Dokal, IS. Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 2013; 98(3):334-8; PMID:22899577; https://doi.org/10.3324/haematol.2012.071068
  • Frank, CJ, Hyde, M, Greider, CW. Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol Cell 2006; 24(3):423-32; PMID:17070718; https://doi.org/10.1016/j.molcel.2006.10.020
  • Li, S, Makovets, S, Matsuguchi, T, Blethrow, JD, Shokat, KM, Blackburn, EH. Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 2009; 136(1):50-61; https://doi.org/10.1016/j.cell.2008.11.027
  • Liu, C-C, Gopalakrishnan, V, Poon, LF, Yan, T, Li, S. Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication. Mol Cell Biol 2014; 34(1):57-70; PMID:24164896; https://doi.org/10.1128/MCB.01235-13
  • Diede, SJ, Gottschling, DE. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ. Cell 1999; 99(7):723-33; PMID:10619426; https://doi.org/10.1016/S0092-8674(00)81670-0
  • Zhu, Z, Chung, WH, Shim, EY, Lee, SE, Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 2008; 134(6):981-94; https://doi.org/10.1016/j.cell.2008.08.037
  • Hughes, TR, Evans, SK, Weilbaecher, RG, Lundblad, V. The Est3 protein is a subunit of yeast telomerase. Current Biology 2000; 10(13):809-12; https://doi.org/10.1016/S0960-9822(00)00562-5
  • Zhou, J, Hidaka, K, Futcher, B. The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol Cell Biol 2000; 20(6):1947-55; PMID:10688642; https://doi.org/10.1128/MCB.20.6.1947-1955.2000
  • Counter, CM, Meyerson, M, Eaton, EN, Weinberg, RA. The catalytic subunit of yeast telomerase. Proc Natl Acad Sci U S A 1997; 94(17):9202-7; https://doi.org/10.1073/pnas.94.17.9202
  • Nugent, CI, Hughes, TR, Lue, NF, Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 1996; 274(5285):249-52; https://doi.org/10.1126/science.274.5285.249
  • Grandin, N, Reed, SI, Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 1997; 11(4):512-27; PMID:9042864; https://doi.org/10.1101/gad.11.4.512
  • Grandin, N, Damon, C, Charbonneau, M. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 2001; 20(5):1173-83; PMID:11230140; https://doi.org/10.1093/emboj/20.5.1173
  • Gao, H, Cervantes, RB, Mandell, EK, Otero, JH, Lundblad, V. RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 2007; 14(3):208-14; https://doi.org/10.1038/nsmb1205
  • Qi, H, Zakian, VA. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 2000; 14(14):1777-88; PMID:10898792
  • Chandra, A, Hughes, TR, Nugent, CI, Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev 2001; 15(4):404-14; https://doi.org/10.1101/gad.861001
  • Petreaca, RC, Chiu, HC, Eckelhoefer, HA, Chuang, C, Xu, L, Nugent, CI. Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p. Nat Cell Biol 2006; 8(7):748-55; PMID:16767082; https://doi.org/10.1038/ncb1430
  • Weinert, T, Hartwell, LH. The RAD9 gene controls the cell cycle response to DNA damage in. Saccharomyces cerevisiae Science 1988; 241:317-22; PMID:3291120
  • Garvik, B, Carson, M, Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 1995; 15(11):6128-38; PMID:7565765; https://doi.org/10.1128/MCB.15.11.6128
  • Martin, V, Du, LL, Rozenzhak, S, Russell, P. Protection of telomeres by a conserved Stn1-Ten1 complex. Proc Natl Acad Sci U S A 2007; 104(35):14038-43; https://doi.org/10.1073/pnas.0705497104
  • Puglisi, A, Bianchi, A, Lemmens, L, Damay, P, Shore, D. Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. EMBO J 2008; 27(17):2328-39; PMID:19172739; https://doi.org/10.1038/emboj.2008.158
  • Grandin, N, Damon, C, Charbonneau, M. Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination. EMBO J 2001; 20(21):6127-39; PMID:11689452; https://doi.org/10.1093/emboj/20.21.6127
  • Pennock, E, Buckley, K, Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 2001; 104(3):387-96; PMID:11239396; https://doi.org/10.1016/S0092-8674(01)00226-4
  • Vodenicharov, MD, Wellinger, RJ. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol Cell 2006; 24(1):127-37; PMID:17018298; https://doi.org/10.1016/j.molcel.2006.07.035
  • Bonetti, D, Martina, M, Clerici, M, Lucchini, G, Longhese, MP. Multiple pathways regulate 3′ overhang generation at S. Cerevisiae Telomeres. Mol Cell 2009; 35(1):70-81; https://doi.org/10.1016/j.molcel.2009.05.015
  • Zubko, MK, Guillard, S, Lydall, D. Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 2004; 168(1):103-15; PMID:15454530; https://doi.org/10.1534/genetics.104.027904
  • Loog, M, Morgan, DO. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 2005; 434(7029):104-8; PMID:15744308; https://doi.org/10.1038/nature03329
  • Miller, ME, Cross, FR. Cyclin specificity: how many wheels do you need on a unicycle?. J Cell Sci 2001; 114(10):1811-20; PMID:11329367
  • Roberts, JM. Evolving ideas about cyclins. Cell 1999; 98(2):129-32; PMID:10428024; https://doi.org/10.1016/S0092-8674(00)81007-7
  • Koivomagi, M, Valk, E, Venta, R, Iofik, A, Lepiku, M, Morgan, DO, Loog, M. Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell 2011; 42(5):610-23; PMID:21658602; https://doi.org/10.1016/j.molcel.2011.05.016
  • Kitagawa, M, Higashi, H, Jung, HK, Suzuki-Takahashi, I, Ikeda, M, Tamai, K, Kato, J, Segawa, K, Yoshida, E, Nishimura, S, et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 1996; 15(24):7060
  • Brown, NR, Noble, ME, Endicott, JA, Johnson, LN. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1999; 1(7):438-43; https://doi.org/10.1038/15674
  • Coudreuse, D, Nurse, P. Driving the cell cycle with a minimal CDK control network. Nature 2010; 468(7327):1074-79; PMID:21179163; https://doi.org/10.1038/nature09543
  • Stern, B, Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends in Genetics 1996; 12(9):345-50; PMID:8855663; https://doi.org/10.1016/S0168-9525(96)80016-3
  • Fisher, D, Krasinska, L, Coudreuse, D, Novák, B. Phosphorylation network dynamics in the control of cell cycle transitions. J Cell Sci 2012; 125(20):4703-11; https://doi.org/10.1242/jcs.106351
  • Fisher, D, Nurse, P. A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 1996; 15(4):850; PMID:8631306
  • Schwob, E, Nasmyth, K. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev 1993; 7(7a):1160-75; https://doi.org/10.1101/gad.7.7a.1160
  • Fitch, I, Dahmann, C, Surana, U, Amon, A, Nasmyth, K, Goetsch, L, Byers, B, Futcher, B. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 1992; 3(7):805-18; https://doi.org/10.1091/mbc.3.7.805
  • Surana, U, Robitsch, H, Price, C, Schuster, T, Fitch, I, Futcher, AB, Nasmyth, K. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 1991; 65(1):145-61; PMID:1849457; https://doi.org/10.1016/0092-8674(91)90416-V
  • Marcand, S, Brevet, V, Mann, C, Gilson, E. Cell cycle restriction of telomere elongation. Current Biology 2000; 10(8):487-490; PMID:10801419; https://doi.org/10.1016/S0960-9822(00)00450-4
  • Elledge, SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996; 274(5293):1664; PMID:8939848; https://doi.org/10.1126/science.274.5293.1664
  • Puig, O, Caspary, F, Rigaut, G, Rutz, B, Bouveret, E, Bragado-Nilsson, E, Wilm, M, Séraphin, B. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 2001; 24(3):218-29; PMID:11403571; https://doi.org/10.1006/meth.2001.1183
  • Ubersax, JA, Woodbury, EL, Quang, PN, Paraz, M, Blethrow, JD, Shah, K, Shokat, KM, Morgan, DO. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 2003; 425(6960):859-64; PMID:14574415; https://doi.org/10.1038/nature02062
  • Kõivomägi, M, Ord, M, Iofik, A, Valk, E, Venta, R, Faustova, I, Kivi, R, Balog, ER, Rubin, SM, Loog, M. Multisite phosphorylation networks as signal processors for Cdk1. Nat Struct Mol Biol 2013; 20(12):1415-1424; https://doi.org/10.1038/nsmb.2706
  • Visintin, R, Craig, K, Hwang, ES, Prinz, S, Tyers, M, Amon, A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 1998; 2(6):709-18; PMID:9885559; https://doi.org/10.1016/S1097-2765(00)80286-5
  • Surana, U, Amon, A, Dowzer, C, McGrew, J, Byers, B, Nasmyth, K. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J 1993; 12(5):1969 PMID:8491189
  • Epstein, CB, Cross, FR. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev 1992; 6(9):1695-706; https://doi.org/10.1101/gad.6.9.1695
  • Donaldson, AD. The yeast mitotic cyclin Clb2 cannot substitute for S phase cyclins in replication origin firing. EMBO Rep 2000 l; 1(6):507-12; PMID:11263495; https://doi.org/10.1093/embo-reports/kvd108
  • Lew, DJ, Reed, SI. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J Cell Biol 1995; 129(3):739-49; PMID:7730408; https://doi.org/10.1083/jcb.129.3.739
  • Donaldson, AD, Raghuraman, MK, Friedman, KL, Cross, FR, Brewer, BJ, Fangman, WL. CLB5-dependent activation of late replication origins in S. Cerevisiae. Mol Cell 1998; 2(2):173-82; https://doi.org/10.1016/S1097-2765(00)80127-6
  • Shen, ZJ, Hsu, PH, Su, YT, Yang, CW, Kao, L, Tseng, SF, Tsai, MD, Teng, SC. PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nat Commun 2014; 5:5312; https://doi.org/10.1038/ncomms6312
  • Kupiec, M. Biology of telomeres: lessons from budding yeast. FEMS Microbiol Rev 2014; 38(2):144-71; PMID:24754043; https://doi.org/10.1111/1574-6976.12054
  • Jin, F, Liu, H, Liang, F, Rizkallah, R, Hurt, MM, Wang, Y. Temporal control of the dephosphorylation of Cdk substrates by mitotic exit pathways in budding yeast. Proc Nat Acad Sci 2008; 105(42):16177-82; https://doi.org/10.1073/pnas.0808719105
  • Grossi, S, Puglisi, A, Dmitriev, PV, Lopes, M, Shore, D. Pol12, the B subunit of DNA polymerase α, functions in both telomere capping and length regulation. Genes Dev 2004; 18(9):992-1006; https://doi.org/10.1101/gad.300004
  • Grossi, S, Puglisi, A, Dmitriev, PV, Lopes, M, Shore, D. Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes Dev 2004; 18(9):992-1006; PMID:15132993; https://doi.org/10.1101/gad.300004
  • Bouchoux, C, Uhlmann, F. A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit. Cell 2011; 147(4):803-14; PMID:22078879; https://doi.org/10.1016/j.cell.2011.09.047
  • Uhlmann, F, Bouchoux, C, López-Avilés, S. A quantitative model for cyclin-dependent kinase control of the cell cycle: revisited. Phil. Trans. R. Soc. B 2011; 366(1584):3572-3583; https://doi.org/10.1098/rstb.2011.0082
  • Porter, AC. Preventing DNA over-replication: a Cdk perspective. Cell Division 2008; 3(1):1-10; PMID:18179693; https://doi.org/10.1186/1747-1028-3-3
  • Queralt, E, Uhlmann, F. Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 2008; 20(6):661-8; PMID:18845253; https://doi.org/10.1016/j.ceb.2008.09.003
  • Satyanarayana, A, Kaldis, P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009; 28(33):2925-39; PMID:19561645; https://doi.org/10.1038/onc.2009.170
  • Turner, NC, Ro, J, André, F, Loi, S, Verma, S, Iwata, H, Harbeck, N, Loibl, S, Huang Bartlett, C, Zhang, K, et al. Palbociclib in hormone-receptor–positive advanced breast cancer. N Engl J Med 2015; 373(3):209-19; https://doi.org/10.1056/NEJMoa1505270
  • Finn, RS, Crown, JP, Lang, I, Boer, K, Bondarenko, IM, Kulyk, SO, Ettl, J, Patel, R, Pinter, T, Schmidt, M, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 2015; 16(1):25-35; PMID:25524798; https://doi.org/10.1016/S1470-2045(14)71159-3
  • Longtine, MS, McKenzie, A 3rd, Demarini, DJ, Shah, NG, Wach, A, Brachat, A, Philippsen, P, Pringle, JR. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998; 14(10):953-61; PMID:9717241; https://doi.org/10.1002/(SICI)1097-0061(199807)14:10%3c953::AID-YEA293%3e3.0.CO;2-U
  • Janke, C, Magiera, MM, Rathfelder, N, Taxis, C, Reber, S, Maekawa, H, Moreno-Borchart, A, Doenges, G, Schwob, E, Schiebel, E, et al. A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 2004; 21(11):947-62; PMID:15334558; https://doi.org/10.1002/yea.1142
  • Lundblad, V, Szostak, JW. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 1989; 57(4):633-43; PMID:2655926; https://doi.org/10.1016/0092-8674(89)90132-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.