1,512
Views
9
CrossRef citations to date
0
Altmetric
Report

EMAP-II sensitize U87MG and glioma stem-like cells to temozolomide via induction of autophagy-mediated cell death and G2/M arrest

ORCID Icon, , , , &
Pages 1085-1092 | Received 01 Feb 2017, Accepted 30 Mar 2017, Published online: 05 May 2017

References

  • Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, Villano JL. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 2014; 23(10):1985-96; PMID:25053711; https://doi.org/10.1158/1055-9965.EPI-14-0275
  • Filatova A, Acker T, Garvalov BK. The cancer stem cell niche(s): The crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta 2013; 1830(2):2496-508; PMID:23079585; https://doi.org/10.1016/j.bbagen.2012.10.008
  • Mahon BP, Okoh CO, McKenna R. Targeting aggressive cancers with an artificial sweetener: Could saccharin be a lead compound in anticancer therapy?. Future Oncol 2015; 11(15):2117-9; PMID:26235178; https://doi.org/10.2217/fon.15.137
  • NCCN Clinical Practice Guidelines in Oncoloy. Central Nervous System Cancers.Version 1. 2016.
  • Agarwala SS, Kirkwood JM. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist 2000; 5(2):144-51; PMID:10794805; https://doi.org/10.1634/theoncologist.5-2-144
  • Hirose Y, Berger MS, Pieper RO. p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res 2001; 61(5):1957-63; PMID:11280752
  • Zhang J, Stevens MF, Bradshaw TD. Temozolomide: Mechanisms of action, repair and resistance. Curr Mol Pharmacol 2012; 5(1):102-14; PMID:22122467; https://doi.org/10.2174/1874467211205010102
  • Murray JC, Heng YM, Symonds P, Rice K, Ward W, Huggins M, Todd I, Robins RA. Endothelial monocyte-activating polypeptide-II (EMAP-II): A novel inducer of lymphocyte apoptosis. J Leukoc Biol 2004; 75(5):772-6; PMID:14982944; https://doi.org/10.1189/jlb.1003487
  • Li Z, Liu YH, Xue YX, Liu LB, Xie H. Mechanisms for endothelial monocyte-activating polypeptide-II-induced opening of the blood-tumor barrier. J Mol Neurosci 2012; 47(2):408-17; PMID:21969114; https://doi.org/10.1007/s12031-011-9657-5
  • Liu J, Liu L, Xue Y, Meng F, Li S, Wang P, Liu Y. Anti-neoplastic activity of low-dose endothelial-monocyte activating polypeptide-II results from defective autophagy and G2/M arrest mediated by PI3K/Akt/FoxO1 axis in human glioblastoma stem cells. Biochem Pharmacol 2014; 89(4):477-89; PMID:24792437; https://doi.org/10.1016/j.bcp.2014.04.014
  • Qiu ZK, Shen D, Chen YS, Yang QY, Guo CC, Feng BH, Chen ZP. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. Chin J Cancer 2014; 33(2):115-22; PMID:23958055; https://doi.org/10.5732/cjc.012.10236
  • Natsumeda M, Aoki H, Miyahara H, Yajima N, Uzuka T, Toyoshima Y, Kakita A, Takahashi H, Fujii Y. Induction of autophagy in temozolomide treated malignant gliomas. Neuropathology 2011; 31(5):486-93; PMID:21269334; https://doi.org/10.1111/j.1440-1789.2010.01197.x
  • Sharma K, Le N, Alotaibi M, Gewirtz DA. Cytotoxic autophagy in cancer therapy. Int J Mol Sci 2014; 15(6):10034-51; PMID:24905404; https://doi.org/10.3390/ijms150610034
  • Fulda S, Kogel D. Cell death by autophagy: Emerging molecular mechanisms and implications for cancer therapy. Oncogene 2015; 34(40):5105-13; PMID:25619832; https://doi.org/10.1038/onc.2014.458
  • Barth S, Glick D, Macleod KF. Autophagy: Assays and artifacts. J Pathol 2010; 221(2):117-24; PMID:20225337; https://doi.org/10.1002/path.2694
  • Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011; 7(3):279-96; PMID:21189453; https://doi.org/10.4161/auto.7.3.14487
  • Puissant A, Fenouille N, Auberger P. When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res 2012; 2(4):397-413; PMID:22860231
  • Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C. Temozolomide: A review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 1997; 23(1):35-61; PMID:9189180; https://doi.org/10.1016/S0305-7372(97)90019-0
  • Perry JA, Kornbluth S. Cdc25 and Wee1: Analogous opposites?. Cell Div 2007; 2:12; PMID:17480229; https://doi.org/10.1186/1747-1028-2-12
  • Lefranc F, Facchini V, Kiss R. Proautophagic drugs: A novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 2007; 12(12):1395-403; PMID:18165616; https://doi.org/10.1634/theoncologist.12-12-1395
  • Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 2001; 4(5):303-13; PMID:11991684; https://doi.org/10.1054/drup.2001.0213
  • Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296(5573):1655-7; PMID:12040186; https://doi.org/10.1126/science.296.5573.1655
  • Zhuang W, Qin Z, Liang Z. The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai) 2009; 41(5):341-51; PMID:19430698; https://doi.org/10.1093/abbs/gmp028
  • Kurosu T, Nagao T, Wu N, Oshikawa G, Miura O. Inhibition of the PI3K/Akt/GSK3 pathway downstream of BCR/ABL, Jak2-V617F, or FLT3-ITD downregulates DNA damage-induced Chk1 activation as well as G2/M arrest and prominently enhances induction of apoptosis. PLoS One 2013; 8(11):e79478; PMID:24260231; https://doi.org/10.1371/journal.pone.0079478
  • van Horssen R, Eggermont AM, ten Hagen TL. Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev 2006; 17(5):339-48; PMID:16945568; https://doi.org/10.1016/j.cytogfr.2006.08.001
  • Li Z, Liu XB, Liu YH, Xue YX, Wang P, Liu LB, Liu J, Yao YL, Ma J. Roles of Serine/Threonine phosphatases in Low-Dose endothelial Monocyte-Activating Polypeptide-II-Induced opening of Blood-Tumor barrier. J Mol Neurosci 2015; 57(1):11-20; PMID:26087743; https://doi.org/10.1007/s12031-015-0604-8
  • Wang Y, Chen L, Bao Z, Li S, You G, Yan W, Shi Z, Liu Y, Yang P, Zhang W, et al. Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and beta-catenin signaling pathways. Oncol Rep 2011; 26(5):1173-80; PMID:21887474
  • Ananta JS, Paulmurugan R, Massoud TF. Nanoparticle-Delivered antisense MicroRNA-21 Enhances the effects of temozolomide on glioblastoma cells. Mol Pharm 2015; 12(12):4509-17; PMID:26559642; https://doi.org/10.1021/acs.molpharmaceut.5b00694
  • Najbauer J, Kraljik N, Nemeth P. Glioma stem cells: Markers, hallmarks and therapeutic targeting by metformin. Pathol Oncol Res 2014; 20(4):789-97; PMID:25168767; https://doi.org/10.1007/s12253-014-9837-z
  • Binello E, Germano IM. Targeting glioma stem cells: A novel framework for brain tumors. Cancer Sci 2011; 102(11):1958-66; PMID:21848914; https://doi.org/10.1111/j.1349-7006.2011.02064.x
  • Facchino S, Abdouh M, Bernier G. Brain cancer stem cells: current status on glioblastoma multiforme. Cancers (Basel) 2011; 3(2):1777-97; PMID:24212782; https://doi.org/10.3390/cancers3021777
  • Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer 2006; 6(6):425-36; PMID:16723989; https://doi.org/10.1038/nrc1889
  • Sciuscio D, Diserens AC, van Dommelen K, Martinet D, Jones G, Janzer RC, Pollo C, Hamou MF, Kaina B, Stupp R, et al. Extent and patterns of MGMT promoter methylation in glioblastoma- and respective glioblastoma-derived spheres. Clin Cancer Res 2011; 17(2):255-66; PMID:21097691; https://doi.org/10.1158/1078-0432.CCR-10-1931
  • Beier D, Rohrl S, Pillai DR, Schwarz S, Kunz-Schughart LA, Leukel P, Proescholdt M, Brawanski A, Bogdahn U, Trampe-Kieslich A, et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 2008; 68(14):5706-15; PMID:18632623; https://doi.org/10.1158/0008-5472.CAN-07-6878
  • Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000; 343(19):1350-4; PMID:11070098; https://doi.org/10.1056/NEJM200011093431901
  • Happold C, Roth P, Silginer M, Florea AM, Lamszus K, Frei K, Deenen R, Reifenberger G, Weller M. Interferon-beta induces loss of spherogenicity and overcomes therapy resistance of glioblastoma stem cells. Mol Cancer Ther 2014; 13(4):948-61; PMID:24526161; https://doi.org/10.1158/1535-7163.MCT-13-0772
  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352(10):997-1003; PMID:15758010; https://doi.org/10.1056/NEJMoa043331
  • Galluzzi L, Morselli E, Vicencio JM, Kepp O, Joza N, Tajeddine N, Kroemer G. Life, death and burial: Multifaceted impact of autophagy. Biochem Soc Trans 2008; 36(Pt 5):786-90; PMID:18793137; https://doi.org/10.1042/BST0360786
  • Codogno P, Meijer AJ. Autophagy and signaling: Their role in cell survival and cell death. Cell Death Differ 2005; 12(Suppl 2):1509-18; PMID:16247498; https://doi.org/10.1038/sj.cdd.4401751
  • Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290(5497):1717-21; PMID:11099404; https://doi.org/10.1126/science.290.5497.1717
  • Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 2008; 27(35):4860-4; PMID:18408756; https://doi.org/10.1038/onc.2008.117
  • Botrugno OA, Robert T, Vanoli F, Foiani M, Minucci S. Molecular pathways: Old drugs define new pathways: non-histone acetylation at the crossroads of the DNA damage response and autophagy. Clin Cancer Res 2012; 18(9):2436-42; PMID:22512979; https://doi.org/10.1158/1078-0432.CCR-11-0767
  • Zhang J, Hummersone M, Matthews CS, Stevens MF, Bradshaw TD. N3-substituted temozolomide analogs overcome methylguanine-DNA methyltransferase and mismatch repair precipitating apoptotic and autophagic cancer cell death. Oncology 2015; 88(1):28-48; PMID:25277441; https://doi.org/10.1159/000366131
  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12(1):1-222; PMID:26799652; https://doi.org/10.1080/15548627.2015.1100356
  • Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3(6):542-5; PMID:17611390; https://doi.org/10.4161/auto.4600
  • Germain M, Nguyen AP, Le Grand JN, Arbour N, Vanderluit JL, Park DS, Opferman JT, Slack RS. MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. EMBO J 2011; 30(2):395-407; PMID:21139567; https://doi.org/10.1038/emboj.2010.327
  • Sakakura K, Takahashi H, Kaira K, Toyoda M, Oyama T, Chikamatsu K. Immunological significance of the accumulation of autophagy components in oral squamous cell carcinoma. Cancer Sci 2015; 106(1):1-8; PMID:25338734; https://doi.org/10.1111/cas.12559
  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005; 171(4):603-14; PMID:16286508; https://doi.org/10.1083/jcb.200507002
  • Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141(7):1146-58; PMID:20541250; https://doi.org/10.1016/j.cell.2010.05.008
  • Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X. Age-related changes in the function of autophagy in rat kidneys. Age (Dordr) 2012; 34(2):329-39; PMID:21455601; https://doi.org/10.1007/s11357-011-9237-1
  • Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Jr., Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 2007; 104(36):14489-94; PMID:17726112; https://doi.org/10.1073/pnas.0701311104
  • Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE, Stenmark H, Brech A. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 2008; 180(6):1065-71; PMID:18347073; https://doi.org/10.1083/jcb.200711108
  • Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 2006; 26(31):8057-68; PMID:16885219; https://doi.org/10.1523/JNEUROSCI.2261-06.2006
  • Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A, et al. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 2011; 7(6):572-83; PMID:21325881; https://doi.org/10.4161/auto.7.6.14943
  • Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. Cell Metab 2009; 10(6):507-15; PMID:19945408; https://doi.org/10.1016/j.cmet.2009.10.008
  • Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004; 36(12):2445-62; PMID:15325584; https://doi.org/10.1016/j.biocel.2004.02.002
  • Choi EJ, Cho BJ, Lee DJ, Hwang YH, Chun SH, Kim HH, Kim IA. Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: Targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases. BMC Cancer 2014; 14:17; PMID:24418474; https://doi.org/10.1186/1471-2407-14-17
  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2002; 36:617-56; PMID:12429704; https://doi.org/10.1146/annurev.genet.36.060402.113540
  • Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432(7015):316-23; PMID:15549093; https://doi.org/10.1038/nature03097
  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73:39-85; PMID:15189136; https://doi.org/10.1146/annurev.biochem.73.011303.073723
  • Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 2004; 11(4):448-57; PMID:14713959; https://doi.org/10.1038/sj.cdd.4401359
  • Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003; 3(5):421-9; PMID:12781359; https://doi.org/10.1016/S1535-6108(03)00110-7
  • Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 2004; 5(10):792-804; PMID:15459660; https://doi.org/10.1038/nrm1493
  • Signore M, Pelacchi F, di Martino S, Runci D, Biffoni M, Giannetti S, Morgante L, De Majo M, Petricoin EF, Stancato L, et al. Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Cell Death Dis 2014; 5:e1223; PMID:24810059; https://doi.org/10.1038/cddis.2014.188

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.