1,041
Views
12
CrossRef citations to date
0
Altmetric
Report

p53R2 overexpression in cervical cancer promotes AKT signaling and EMT, and is correlated with tumor progression, metastasis and poor prognosis

, , ORCID Icon, , ORCID Icon, , , , , , ORCID Icon & show all
Pages 1673-1682 | Received 24 Mar 2017, Accepted 12 Apr 2017, Published online: 01 Sep 2017

References

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: A Cancer J Clin 2015; 65:87-108.
  • Boussios S, Seraj E, Zarkavelis G, Petrakis D, Kollas A, Kafantari A, Assi A, Tatsi K, Pavlidis N, Pentheroudakis G. Management of patients with recurrent/advanced cervical cancer beyond first line platinum regimens: Where do we stand? A literature review. Crit Rev Oncol Hematol 2016; 108:164-74; PMID:27931835; https://doi.org/10.1016/j.critrevonc.2016.11.006
  • Nordlund P, Reichard P. Ribonucleotide reductases. Annu Rev Biochem 2006; 75:681-706; PMID:16756507; https://doi.org/10.1146/annurev.biochem.75.103004.142443
  • Thelander L, Reichard P. Reduction of ribonucleotides. Annu Rev Biochem 1979; 48:133-58; PMID:382982; https://doi.org/10.1146/annurev.bi.48.070179.001025
  • Eklund H, Uhlin U, Farnegardh M, Logan DT, Nordlund P. Structure and function of the radical enzyme ribonucleotide reductase. Prog Bio Mol Biol 2001; 77:177-268; PMID:11796141; https://doi.org/10.1016/S0079-6107(01)00014-1
  • Zhou B, Shao J, Su L, Yuan YC, Qi C, Shih J, Xi B, Chu B, Yen Y. A dityrosyl-diiron radical cofactor center is essential for human ribonucleotide reductases. Mol Cancer Ther 2005; 4:1830-6; PMID:16373698; https://doi.org/10.1158/1535-7163.MCT-05-0273
  • Cooperman BS, Kashlan OB. A comprehensive model for the allosteric regulation of Class Ia ribonucleotide reductases. Advances in Enzyme Regulation 2003; 43:167-82; PMID:12791390; https://doi.org/10.1016/S0065-2571(02)00035-3
  • Kolberg M, Strand KR, Graff P, Andersson KK. Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta 2004; 1699:1-34; PMID:15158709; https://doi.org/10.1016/S1570-9639(04)00054-8
  • Qi H, Lou M, Chen Y, Liu X, Chen N, Shan J, Ling Z, Shen J, Zhu L, Yen Y, et al. Non-enzymatic action of RRM1 protein upregulates PTEN leading to inhibition of colorectal cancer metastasis. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2015; 36:4833-42; PMID:25638032; https://doi.org/10.1007/s13277-015-3137-4
  • Fan H, Huang A, Villegas C, Wright JA. The R1 component of mammalian ribonucleotide reductase has malignancy-suppressing activity as demonstrated by gene transfer experiments. Proceedings of the National Academy of Sciences of the United States of America 1997; 94:13181-6; PMID:9371820; https://doi.org/10.1073/pnas.94.24.13181
  • Fan H, Villegas C, Wright JA. Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Nat Acad Sci U S A 1996; 93:14036-40; PMID:8943056; https://doi.org/10.1073/pnas.93.24.14036
  • Gautam A, Li Z-R, Bepler G. RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene 2003; 22:2135-42; PMID:12687015; https://doi.org/10.1038/sj.onc.1206232
  • Wang L, Meng L, Wang XW, Ma GY, Chen JH. Expression of RRM1 and RRM2 as a novel prognostic marker in advanced non-small cell lung cancer receiving chemotherapy. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2014; 35:1899-906; PMID:24155212; https://doi.org/10.1007/s13277-013-1255-4
  • Zhang Q, Sun T, Kang P, Qian K, Deng B, Zhou J, Wang R, Jiang B, Li K, Liu F, et al. Combined analysis of rearrangement of ALK, ROS1, somatic mutation of EGFR, KRAS, BRAF, PIK3CA, and mRNA expression of ERCC1, TYMS, RRM1, TUBB3, EGFR in patients with non-small cell lung cancer and their clinical significance. Cancer Chemother Pharmacol 2016; 77:583-93; PMID:26842788; https://doi.org/10.1007/s00280-016-2969-y
  • Zimling ZG, Santoni-Rugiu E, Bech C, Sorensen JB. High RRM1 Expression Is Associated with Adverse Outcome in Patients with Cisplatin/Vinorelbine-treated Malignant Pleural Mesothelioma. Anticancer Res 2015; 35:6731-8; PMID:26637889
  • Lopez-Contreras AJ, Specks J, Barlow JH, Ambrogio C, Desler C, Vikingsson S, Rodrigo-Perez S, Green H, Rasmussen LJ, Murga M, et al. Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice. Genes & development 2015; 29:690-5; https://doi.org/10.1101/gad.256958.114
  • Yoshida Y, Tsunoda T, Doi K, Tanaka Y, Fujimoto T, Machida T, Ota T, Koyanagi M, Takashima Y, Sasazuki T, et al. KRAS-mediated up-regulation of RRM2 expression is essential for the proliferation of colorectal cancer cell lines. Anticancer Res 2011; 31:2535-9; PMID:21873171
  • Liu X, Zhou B, Xue L, Yen F, Chu P, Un F, Yen Y. Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin Colorectal Cancer 2007; 6:374-81; PMID:17311703; https://doi.org/10.3816/CCC.2007.n.007
  • Zhang K, Hu S, Wu J, Chen L, Lu J, Wang X, Liu X, Zhou B, Yen Y. Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis. Molecular cancer 2009; 8:11; PMID:19250552; https://doi.org/10.1186/1476-4598-8-11
  • Zhong Z, Cao Y, Yang S, Zhang S. Overexpression of RRM2 in gastric cancer cell promotes their invasiveness via AKT/NF-kappaB signaling pathway. Die Pharmazie 2016; 71:280-4; PMID:27348973
  • Farquhar J, Savarino J, Jackson TL, Thiemens MH. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature 2000; 404:50-2; PMID:10716436; https://doi.org/10.1038/35003517
  • Hsu NY, Wu JY, Liu X, Yen Y, Chen CY, Chou MC, Lin CH, Lee H, Cheng YW. Expression status of ribonucleotide reductase small subunits hRRM2/p53R2 as prognostic biomarkers in stage I and II non-small cell lung cancer. Anticancer Res 2011; 31:3475-81; PMID:21965764
  • Nakano K, Balint E, Ashcroft M, Vousden KH. A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 2000; 19:4283-9; PMID:10980602; https://doi.org/10.1038/sj.onc.1203774
  • Yamaguchi T, Matsuda K, Sagiya Y, Iwadate M, Fujino MA, Nakamura Y, Arakawa H. p53R2-dependent pathway for DNA synthesis in a p53-regulated cell cycle checkpoint. Cancer Res 2001; 61:8256-62; PMID:11719458
  • Liu X, Lai L, Wang X, Xue L, Leora S, Wu J, Hu S, Zhang K, Kuo ML, Zhou L, et al. Ribonucleotide reductase small subunit M2B prognoses better survival in colorectal cancer. Cancer Res 2011; 71:3202-13; PMID:21415168; https://doi.org/10.1158/0008-5472.CAN-11-0054
  • Liu X, Zhou B, Xue L, Shih J, Tye K, Lin W, Qi C, Chu P, Un F, Wen W, et al. Metastasis-suppressing potential of ribonucleotide reductase small subunit p53R2 in human cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research 2006; 12:6337-44; PMID:17085643; https://doi.org/10.1158/1078-0432.CCR-06-0799
  • Yoshida T, Haga S, Numata Y, Yamashita K, Mikami T, Ogawa T, Ohkusa T, Okayasu I. Disruption of the p53-p53r2 DNA repair system in ulcerative colitis contributes to colon tumorigenesis. International journal of cancer 2006; 118:1395-403; PMID:16206288; https://doi.org/10.1002/ijc.21538
  • Tian H, Ge C, Li H, Zhao F, Hou H, Chen T, Jiang G, Xie H, Cui Y, Yao M, et al. Ribonucleotide reductase M2B inhibits cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/Akt1 pathway in hepatocellular carcinoma. Hepatology 2014; 59:1459-70; PMID:24214128; https://doi.org/10.1002/hep.26929
  • Liu X, Zhang H, Lai L, Wang X, Loera S, Xue L, He H, Zhang K, Hu S, Huang Y, et al. Ribonucleotide reductase small subunit M2 serves as a prognostic biomarker and predicts poor survival of colorectal cancers. Clini Sci 2013; 124:567-78; PMID:23113760; https://doi.org/10.1042/CS20120240
  • Okumura H, Natsugoe S, Yokomakura N, Kita Y, Matsumoto M, Uchikado Y, Setoyama T, Owaki T, Ishigami S, Aikou T. Expression of p53R2 is related to prognosis in patients with esophageal squamous cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2006; 12:3740-5; PMID:16778101; https://doi.org/10.1158/1078-0432.CCR-05-2416
  • Yokomakura N, Natsugoe S, Okumura H, Ikeda R, Uchikado Y, Mataki Y, Takatori H, Matsumoto M, Owaki T, Ishigami S, et al. Improvement in radiosensitivity using small interfering RNA targeting p53R2 in esophageal squamous cell carcinoma. Oncology reports 2007; 18:561-7; PMID:17671702
  • Yanamoto S, Iwamoto T, Kawasaki G, Yoshitomi I, Baba N, Mizuno A. Silencing of the p53R2 gene by RNA interference inhibits growth and enhances 5-fluorouracil sensitivity of oral cancer cells. Cancer Lett 2005; 223:67-76; PMID:15890238; https://doi.org/10.1016/j.canlet.2004.10.019
  • Matsushita S, Ikeda R, Fukushige T, Tajitsu Y, Gunshin K, Okumura H, Ushiyama M, Akiyama S, Kawai K, Takeda Y, et al. p53R2 is a prognostic factor of melanoma and regulates proliferation and chemosensitivity of melanoma cells. J Dermatol Sci 2012; 68:19-24; PMID:22902076; https://doi.org/10.1016/j.jdermsci.2012.07.005
  • Xu R, Hu JY, Zhang TS, Jiang C, Wang HY. TRIM29 overexpression is associated with poor prognosis and promotes tumor progression by activating wnt/beta-catenin pathway in cervical cancer. Oncotarget 2016; 7:28579-91; PMID:27081037
  • Zhou Q, Lui VW, Yeo W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future oncology 2011; 7:1149-67; PMID:21992728; https://doi.org/10.2217/fon.11.95
  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455:1069-75; PMID:18948947; https://doi.org/10.1038/nature07423
  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304:554; PMID:15016963; https://doi.org/10.1126/science.1096502
  • Thomas RK, Baker AC, DeBiasi RM, Winckler W, LaFramboise T, Lin WM, Wang M, Feng W, Zander T, MacConnaill LE, et al. High-throughput oncogene mutation profiling in human cancer. Nature Genet 2007; 39:347-51; PMID:17293865; https://doi.org/10.1038/ng1975
  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318:1108-13; PMID:17932254; https://doi.org/10.1126/science.1145720
  • Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights and advances in drug development. British J Clin Pharmacol 2016; 82:943-56; PMID:27232857; https://doi.org/10.1111/bcp.13021
  • Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clini Invest 2004; 113:1774-83; PMID:15199412; https://doi.org/10.1172/JCI20513
  • Larue L, Bellacosa A. Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 2005; 24:7443-54; PMID:16288291; https://doi.org/10.1038/sj.onc.1209091
  • Wang X, Zhenchuk A, Wiman KG, Albertioni F. Regulation of p53R2 and its role as potential target for cancer therapy. Cancer letters 2009; 276:1-7; PMID:18760875; https://doi.org/10.1016/j.canlet.2008.07.019
  • Yousefi B, Rahmati M, Ahmadi Y. The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21. Life Sci 2014; 99:14-7; PMID:24486301; https://doi.org/10.1016/j.lfs.2014.01.063
  • Kunos CA, Chiu SM, Pink J, Kinsella TJ. Modulating radiation resistance by inhibiting ribonucleotide reductase in cancers with virally or mutationally silenced p53 protein. Radiat Res 2009; 172:666-76; PMID:19929413; https://doi.org/10.1667/RR1858.1
  • Qi JJ, Liu L, Cao JX, An GS, Li SY, Li G, Jia HT, Ni JH. E2F1 regulates p53R2 gene expression in p53-deficient cells. Mol Cell Biochem 2015; 399:179-88; PMID:25312903; https://doi.org/10.1007/s11010-014-2244-7
  • Xue L, Zhou B, Liu X, Qiu W, Jin Z, Yen Y. Wild-Type p53 Regulates Human Ribonucleotide Reductase by Protein-Protein Interaction with p53R2 as well as hRRM2 Subunits. Cancer Res 2003; 63:980-6; PMID:12615712
  • Kimura T, Takeda S, Sagiya Y, Gotoh M, Nakamura Y, Arakawa H. Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP pools. Nat Genet 2003; 34:440-5; PMID:12858174; https://doi.org/10.1038/ng1212
  • Kawakita K, Nishiyama T, Fujishiro T, Hayashi S, Kanzaki N, Hashimoto S, Takebe K, Iwasa K, Sakata S, Nishida K, et al. Akt phosphorylation in human chondrocytes is regulated by p53R2 in response to mechanical stress. Osteoarthritis Cartilage 2012; 20:1603-9; PMID:22954457; https://doi.org/10.1016/j.joca.2012.08.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.