1,882
Views
18
CrossRef citations to date
0
Altmetric
Report

The human mitochondrial Hsp60 in the APO conformation forms a stable tetradecameric complex

ORCID Icon, ORCID Icon, , ORCID Icon, &
Pages 1309-1319 | Received 15 Mar 2017, Accepted 12 Apr 2017, Published online: 15 Jun 2017

References

  • Ben-Naim A. Levinthal's question revisited, and answered. J Biomol Struct Dyn 2012; 30(1):113-24; PMID:22571437; https://doi.org/10.1080/07391102.2012.674286
  • Bywater RP. Comments on the paper “Levinthal's question revisited, and answered” by A. Ben-Naim. J Biomol Struct Dyn 2013; 31(9):967-9; PMID:23297697; https://doi.org/10.1080/07391102.2012.748531
  • Hildenbrand ZL, Bernal RA. Chaperonin-mediated folding of viral proteins. Adv Exp Med Biol 2012; 726, 307-24; PMID:22297519
  • Ellis RJ. Molecular chaperones. Opening and closing the Anfinsen cage. Curr Biol 1994; 4(7):633-5.
  • Horwich AL, Fenton WA, Chapman E, Farr GW. Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 2007; 23, 115-45; PMID:17489689; https://doi.org/10.1146/annurev.cellbio.23.090506.123555
  • Ferrer M, Lunsdorf H, Chernikova TN, Yakimov M, Timmis KN, Golyshin PN. Functional consequences of single:double ring transitions in chaperonins: life in the cold. Mol Microbiol 2004; 53(1):167-82; PMID:15225312; https://doi.org/10.1111/j.1365-2958.2004.04077.x
  • Fayet O, Ziegelhoffer T, Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 1989; 171(3):1379-85; PMID:2563997; https://doi.org/10.1128/jb.171.3.1379-1385.1989
  • Rospert S, Junne T, Glick BS, Schatz G. Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES. FEBS Lett 1993; 335(3):358-60; PMID:7903252; https://doi.org/10.1016/0014-5793(93)80419-U
  • Reading DS, Hallberg RL, Myers AM. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 1989; 337(6208):655-9; PMID:2563898; https://doi.org/10.1038/337655a0
  • Levy-Rimler G, Bell RE, Ben-Tal N, Azem A. Type I chaperonins: not all are created equal. FEBS Lett 2002; 529(1):1-5; PMID:12354603; https://doi.org/10.1016/S0014-5793(02)03178-2
  • Zhang J, Baker ML, Schroder GF, Douglas NR, Reissmann S, Jakana J, Dougherty M, Fu CJ, Levitt M, Ludtke SJ, Frydman J, Chiu W. Mechanism of folding chamber closure in a group II chaperonin. Nature 2010; 463(7279):379-83; PMID:20090755; https://doi.org/10.1038/nature08701
  • Fenton WA, Horwich AL. GroEL-mediated protein folding. Protein Sci 1997; 6(4):743-60; PMID:9098884; https://doi.org/10.1002/pro.5560060401
  • Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, Horwich AL, Saibil HR. ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 2001; 107(7):869-79; PMID:11779463; https://doi.org/10.1016/S0092-8674(01)00617-1
  • Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 1998; 93(1):125-38; PMID:9546398; https://doi.org/10.1016/S0092-8674(00)81152-6
  • Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 1994; 371(6498):578-86; PMID:7935790; https://doi.org/10.1038/371578a0
  • Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 2007; 14(5):432-40; PMID:17460696; https://doi.org/10.1038/nsmb1236
  • Molugu SK, Hildenbrand ZL, Morgan DG, Sherman MB, He L, Georgopoulos C, Sernova NV, Kurochkina LP, Mesyanzhinov VV, Miroshnikov KA, Bernal RA. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin. Structure 2016; 24(4):537-46; PMID:26996960; https://doi.org/10.1016/j.str.2016.02.006
  • Ishii N, Taguchi H, Sasabe H, Yoshida M. Equatorial split of holo-chaperonin from Thermus thermophilus by ATP and K+. FEBS Lett 1995; 362(2):121-5; PMID:7720857; https://doi.org/10.1016/0014-5793(95)00222-U
  • Ishii N, Taguchi H, Sumi M, Yoshida M. Structure of holo-chaperonin studied with electron microscopy. Oligomeric cpn10 on top of two layers of cpn60 rings with two stripes each. FEBS Lett 1992; 299(2):169-74; PMID:1347504; https://doi.org/10.1016/0014-5793(92)80240-H
  • Truscott KN, Hoj PB, Scopes RK. Purification and characterization of chaperonin 60 and chaperonin 10 from the anaerobic thermophile Thermoanaerobacter brockii. Eur J Biochem 1994; 222(2):277-84; PMID:7912671; https://doi.org/10.1111/j.1432-1033.1994.tb18866.x
  • Semenyuk PI, Orlov VN, Sokolova OS, Kurochkina LP. New GroEL-like chaperonin of bacteriophage OBP Pseudomonas fluorescens suppresses thermal protein aggregation in an ATP-dependent manner. Biochem J 2016; 473(15):2383-93; PMID:27247423; https://doi.org/10.1042/BCJ20160367
  • Viitanen PV, Lorimer GH, Seetharam R, Gupta RS, Oppenheim J, Thomas JO, Cowan NJ. Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J Biol Chem 1992; 267(2):695-8. PMID:1346131
  • Horwich A. Protein import into mitochondria and peroxisomes. Curr Opin Cell Biol 1990; 2(4):625-33; PMID:1979227; https://doi.org/10.1016/0955-0674(90)90103-L
  • Dickson R, Larsen B, Viitanen PV, Tormey MB, Geske J, Strange R, Bemis LT. Cloning, expression, and purification of a functional nonacetylated mammalian mitochondrial chaperonin 10. J Biol Chem 1994; 269(43):26858-64; PMID:7929423
  • Soltys BJ, Gupta RS. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein(Hsp60) in mammalian cells. Exp Cell Res 1996; 222(1):16-27; PMID:8549659; https://doi.org/10.1006/excr.1996.0003
  • Singh B, Patel HV, Ridley RG, Freeman KB, Gupta RS. Mitochondrial import of the human chaperonin (HSP60) protein. Biochem Biophys Res Commun 1990; 169(2):391-6; PMID:1972619; https://doi.org/10.1016/0006-291X(90)90344-M
  • Soltys BJ, Gupta RS. Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 1997; 21(5):315-20; PMID:9243807; https://doi.org/10.1006/cbir.1997.0144
  • Soltys BJ, Gupta RS. Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci 1999; 24(5):174-7; PMID:10322429; https://doi.org/10.1016/S0968-0004(99)01390-0
  • Vilasi S, Carrotta R, Mangione MR, Campanella C, Librizzi F, Randazzo L, Martorana V, Marino Gammazza A, Ortore MG, Vilasi A, et al. Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. PLoS One 2014; 9(5):e97657; PMID:24830947; https://doi.org/10.1371/journal.pone.0097657
  • Itoh H, Komatsuda A, Ohtani H, Wakui H, Imai H, Sawada K, Otaka M, Ogura M, Suzuki A, Hamada F. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. Eur J Biochem 2002; 269(23):5931-8; PMID:12444982; https://doi.org/10.1046/j.1432-1033.2002.03317.x
  • Khan IU, Wallin R, Gupta RS, Kammer GM. Protein kinase A-catalyzed phosphorylation of heat shock protein 60 chaperone regulates its attachment to histone 2B in the T lymphocyte plasma membrane. Proc Natl Acad Sci U S A 1998; 95(18):10425-30; PMID:9724719; https://doi.org/10.1073/pnas.95.18.10425
  • Hansen JJ, Durr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 2002; 70(5):1328-32; PMID:11898127; https://doi.org/10.1086/339935
  • Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 2008; 83(1):30-42; PMID:18571143; https://doi.org/10.1016/j.ajhg.2008.05.016
  • Henderson B, Fares MA, Lund PA. Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 2013; 88(4):955-87; PMID:23551966; https://doi.org/10.1111/brv.12037
  • Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kgdalton mycobacterial antigen. Mol Cell Biol 1989; 9(5):2279-83; PMID:2568584; https://doi.org/10.1128/MCB.9.5.2279
  • Xu Z, Horwich AL, Sigler PB. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 1997; 388(6644):741-50; PMID:9285585; https://doi.org/10.1038/41944
  • Nielsen KL, Cowan NJ. A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol Cell 1998; 2(1):93-9; PMID:9702195; https://doi.org/10.1016/S1097-2765(00)80117-3
  • Levy-Rimler G, Viitanen P, Weiss C, Sharkia R, Greenberg A, Niv A, Lustig A, Delarea Y, Azem A. The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60. Eur J Biochem 2001; 268(12):3465-72; PMID:11422376; https://doi.org/10.1046/j.1432-1327.2001.02243.x
  • Zhou L, Xie J, Ruan Y, Zhu H, Wang W, Yun X, Guo L, Gan H, Sun L, Yu M, Gu J. Expression and purification of secreted recombinant hsp60 from eukaryotic cells. Protein Expr Purif 2010; 72(2):179-83; PMID:20362058; https://doi.org/10.1016/j.pep.2010.03.021
  • Cunha DA, Zancope-Oliveira RM, Sueli M, Felipe S, Salem-Izacc SM, Deepe GS, Jr, Soares CM. Heterologous expression, purification, and immunological reactivity of a recombinant HSP60 from Paracoccidioides brasiliensis. Clin Diagn Lab Immunol 2002; 9(2):374-7; PMID:11874881
  • Viitanen PV, Lorimer G, Bergmeier W, Weiss C, Kessel M, Goloubinoff P. Purification of mammalian mitochondrial chaperonin 60 through in vitro reconstitution of active oligomers. Methods Enzymol 1998; 290, 203-17; PMID:9534164
  • Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 2007; 157(1):38-46; PMID:16859925; https://doi.org/10.1016/j.jsb.2006.05.009
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13):1605-12; PMID:15264254; https://doi.org/10.1002/jcc.20084
  • Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci U S A 2015; 112(19):6044-9; PMID:25918392; https://doi.org/10.1073/pnas.1411718112
  • Roseman AM, Ranson NA, Gowen B, Fuller SD, Saibil HR. Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy. J Struct Biol 2001; 135(2):115-25; PMID:11580261; https://doi.org/10.1006/jsbi.2001.4374
  • Roseman AM, Chen S, White H, Braig K, Saibil HR. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 1996; 87(2):241-51; PMID:8861908; https://doi.org/10.1016/S0092-8674(00)81342-2
  • Elad N, Farr GW, Clare DK, Orlova EV, Horwich AL, Saibil HR. Topologies of a substrate protein bound to the chaperonin GroEL. Mol Cell 2007; 26(3):415-26; PMID:17499047; https://doi.org/10.1016/j.molcel.2007.04.004
  • Cheng MY, Hartl FU, Horwich AL. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 1990; 348(6300):455-8; PMID:1978929; https://doi.org/10.1038/348455a0
  • Parnas A, Nadler M, Nisemblat S, Horovitz A, Mandel H, Azem A. The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer. J Biol Chem 2009; 284(41):28198-203; PMID:19706612; https://doi.org/10.1074/jbc.M109.031997
  • Nisemblat S, Parnas A, Yaniv O, Azem A, Frolow F. Crystallization and structure determination of a symmetrical ‘football’ complex of the mammalian mitochondrial Hsp60-Hsp10 chaperonins. Acta Crystallogr F Struct Biol Commun 2014; 70(Pt 1):116-9; PMID:24419632; https://doi.org/10.1107/S2053230X1303389X
  • Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S. 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 2015; 348(6239):1147-51; PMID:25953817; https://doi.org/10.1126/science.aab1576
  • Fei X, Ye X, LaRonde NA, Lorimer GH. Formation and structures of GroEL:GroES2 chaperonin footballs, the protein-folding functional form. Proc Natl Acad Sci U S A 2014; 111(35):12775-80; PMID:25136110; https://doi.org/10.1073/pnas.1412922111
  • Ye X, Lorimer GH. Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange. Proc Natl Acad Sci U S A 2013; 110(46):E4289-97; PMID:24167257; https://doi.org/10.1073/pnas.1317702110
  • Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 2012; 149(1):113-23; PMID:22445172; https://doi.org/10.1016/j.cell.2012.02.047
  • Frank J. Single-particle reconstruction of biological macromolecules in electron microscopy–30 years. Q Rev Biophys 2009; 42(3):139-58; PMID:20025794; https://doi.org/10.1017/S0033583509990059
  • Ohi M, Li Y, Cheng Y, Walz T. Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol Proced Online 2004; 6, 23-34; PMID:15103397; https://doi.org/10.1251/bpo70
  • Ranson NA, Clare DK, Farr GW, Houldershaw D, Horwich AL, Saibil HR. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat Struct Mol Biol 2006; 13(2):147-52; PMID:16429154; https://doi.org/10.1038/nsmb1046
  • Nielsen KL, McLennan N, Masters M, Cowan NJ. A single-ring mitochondrial chaperonin(Hsp60-Hsp10) can substitute for GroEL-GroES in vivo. J Bacteriol 1999; 181(18):5871-5; PMID:10482535
  • Sewell BT, Best RB, Chen S, Roseman AM, Farr GW, Horwich AL, Saibil HR. A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation. Nat Struct Mol Biol 2004; 11(11):1128-33; PMID:15475965; https://doi.org/10.1038/nsmb844