1,667
Views
12
CrossRef citations to date
0
Altmetric
Review

Critical histone post-translational modifications for centromere function and propagation

Pages 1259-1265 | Received 13 Mar 2017, Accepted 24 Apr 2017, Published online: 15 Jun 2017

References

  • Black BE, Cleveland DW. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 2011; 144:471-9; PMID:21335232; https://doi.org/10.1016/j.cell.2011.02.002
  • Guse A, Carroll CW, Moree B, Fuller CJ, Straight AF. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 2011; 477:354-8; PMID:21874020; https://doi.org/10.1038/nature10379
  • Mendiburo MJ, Padeken J, Fulop S, Schepers A, Heun P. Drosophila CENH3 is sufficient for centromere formation. Science 2011; 334:686-90; PMID:22053052; https://doi.org/10.1126/science.1206880
  • Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA, Black BE, Foltz DR. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 2011; 194:229-43; PMID:21768289; https://doi.org/10.1083/jcb.201012017
  • Hori T, Shang WH, Takeuchi K, Fukagawa T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J Cell Biol 2013; 200:45-60; PMID:23277427; https://doi.org/10.1083/jcb.201210106
  • Sullivan BA, Karpen GH. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 2004; 11:1076-83; https://doi.org/10.1038/nsmb845
  • Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwen BF, Shang WH, Suzuki E, Okawa K, et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 2008; 135:1039-52; PMID:19070575; https://doi.org/10.1016/j.cell.2008.10.019
  • Fukagawa T, Earnshaw WC. The centromere: chromatin foundation for the kinetochore machinery. Dev Cell 2014; 30:496-508; PMID:25203206; https://doi.org/10.1016/j.devcel.2014.08.016
  • Blower MD, Sullivan BA, Karpen GH. Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2002; 2:319-30; PMID:11879637; https://doi.org/10.1016/S1534-5807(02)00135-1
  • Ribeiro SA, Vagnarelli P, Dong Y, Hori T, McEwen BF, Fukagawa T, Flors C, Earnshaw WC. A super-resolution map of the vertebrate kinetochore. Proc Natl Acad Sci U S A 2010; 107:10484-9; PMID:20483991; https://doi.org/10.1073/pnas.1002325107
  • Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 2008; 9:179-91; PMID:18250624; https://doi.org/10.1038/nrg2270
  • Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci U S A 2006; 103:4186-91; PMID:16537506; https://doi.org/10.1073/pnas.0507947103
  • Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 2011; 30:328-40; PMID:21157429; https://doi.org/10.1038/emboj.2010.329
  • Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M, Kimura H, Kelly DA, Turner BM, Masumoto H, Larionov V, et al. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 2012; 125:411-21; PMID:22331359; https://doi.org/10.1242/jcs.090639
  • Molina O, Vargiu G, Abad MA, Zhiteneva A, Jeyaprakash AA, Masumoto H, Kouprina N, Larionov V, Earnshaw WC. Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance. Nat Commun 2016; 7:13334; PMID:27841270; https://doi.org/10.1038/ncomms13334
  • Kunitoku N, Sasayama T, Marumoto T, Zhang D, Honda S, Kobayashi O, Hatakeyama K, Ushio Y, Saya H, Hirota T. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 2003; 5:853-64; PMID:14667408; https://doi.org/10.1016/S1534-5807(03)00364-2
  • Yu Z, Zhou X, Wang W, Deng W, Fang J, Hu H, Wang Z, Li S, Cui L, Shen J, et al. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell 2015; 32:68-81; PMID:25556658; https://doi.org/10.1016/j.devcel.2014.11.030
  • Niikura Y, Kitagawa R, Ogi H, Abdulle R, Pagala V, Kitagawa K. CENP-A K124 ubiquitylation is required for CENP-A deposition at the centromere. Dev Cell 2015; 32:589-603; PMID:25727006; https://doi.org/10.1016/j.devcel.2015.01.024
  • Boltengagen M, Huang A, Boltengagen A, Trixl L, Lindner H, Kremser L, Offterdinger M, Lusser A. A novel role for the histone acetyltransferase Hat1 in the CENP-A/CID assembly pathway in Drosophila melanogaster. Nucleic Acids Res 2016; 44:2145-59; PMID:26586808; https://doi.org/10.1093/nar/gkv1235
  • Sathyan KM, Fachinetti D, Foltz DR. alpha-amino trimethylation of CENP-A by NRMT is required for full recruitment of the centromere. Nat Commun 2017; 8:14678; PMID:28266506; https://doi.org/10.1038/ncomms14678
  • Bui M, Pitman M, Nuccio A, Roque S, Donlin-Asp PG, Nita-Lazar A, Papoian GA, Dalal Y. Internal modifications in the CENP-A nucleosome modulate centromeric dynamics. Epigenetics Chromatin 2017; 10:17; https://doi.org/10.1186/s13072-017-0124-6
  • Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara Y, Fujiyama A, Fukagawa T. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res 2010; 20:1219-28; PMID:20534883; https://doi.org/10.1101/gr.106245.110
  • Shang WH, Hori T, Martins NM, Toyoda A, Misu S, Monma N, Hiratani I, Maeshima K, Ikeo K, Fujiyama A, et al. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev Cell 2013; 24:635-48; PMID:23499358; https://doi.org/10.1016/j.devcel.2013.02.009
  • Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009; 326:865-7; PMID:19892987; https://doi.org/10.1126/science.1178158
  • Hori T, Shang WH, Toyoda A, Misu S, Monma N, Ikeo K, Molina O, Vargiu G, Fujiyama A, Kimura H, et al. Histone H4 Lys 20 Monomethylation of the CENP-A Nucleosome Is Essential for Kinetochore Assembly. Dev Cell 2014; 29:740-9; PMID:24960696; https://doi.org/10.1016/j.devcel.2014.05.001
  • Shang WH, Hori T, Westhorpe FG, Godek KM, Toyoda A, Misu S, Monma N, Ikeo K, Carroll CW, Takami Y, et al. Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nat Commun 2016; 7:13465; PMID:27811920; https://doi.org/10.1038/ncomms13465
  • Shi J, Dawe RK. Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 2006; 173:1571-83; PMID:16624902; https://doi.org/10.1534/genetics.106.056853
  • Stimpson KM, Sullivan BA. Epigenomics of centromere assembly and function. Curr Opin Cell Biol 2010; 22:772-80; PMID:20675111; https://doi.org/10.1016/j.ceb.2010.07.002
  • Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 2003; 12:2711-21; PMID:12928482; https://doi.org/10.1093/hmg/ddg282
  • Alonso A, Hasson D, Cheung F, Warburton PE. A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 2010; 3:6; https://doi.org/10.1186/1756-8935-3-6
  • Bassett EA, Wood S, Salimian KJ, Ajith S, Foltz DR, Black BE. Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors. J Cell Biol 2010; 190:177-85; PMID:20643881; https://doi.org/10.1083/jcb.201001035
  • Johnston K, Joglekar A, Hori T, Suzuki A, Fukagawa T, Salmon ED. Vertebrate kinetochore protein architecture: protein copy number. J Cell Biol 2010; 189:937-43; PMID:20548100; https://doi.org/10.1083/jcb.200912022
  • Beck DB, Oda H, Shen SS, Reinberg D. PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev 2012; 26:325-37; https://doi.org/10.1101/gad.177444.111
  • Carroll CW, Silva MC, Godek KM, Jansen LE, Straight AF. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 2009; 11:896-902; PMID:19543270; https://doi.org/10.1038/ncb1899
  • Kato H, Jiang J, Zhou BR, Rozendaal M, Feng H, Ghirlando R, Xiao TS, Straight AF, Bai Y. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 2013; 340:1110-3; PMID:23723239; https://doi.org/10.1126/science.1235532
  • McKinley KL, Sekulic N, Guo LY, Tsinman T, Black BE, Cheeseman IM. The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol Cell 2015; 60:886-98; PMID:26698661; https://doi.org/10.1016/j.molcel.2015.10.027
  • Weir JR, Faesen AC, Klare K, Petrovic A, Basilico F, Fischbock J, Pentakota S, Keller J, Pesenti ME, Pan D, et al. Insights from biochemical reconstitution into the architecture of human kinetochores. Nature 2016; 537:249-53; PMID:27580032; https://doi.org/10.1038/nature19333
  • Muller S, Montes de Oca R, Lacoste N, Dingli F, Loew D, Almouzni G. Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading. Cell reports 2014; 8:190-203; PMID:25001279; https://doi.org/10.1016/j.celrep.2014.06.002
  • Stankovic A, Guo LY, Mata JF, Bodor DL, Cao XJ, Bailey AO, Shabanowitz J, Hunt DF, Garcia BA, Black BE, et al. A dual inhibitory mechanism sufficient to maintain cell-cycle-restricted CENP-A assembly. Mol Cell 2017; 65:231-46; PMID:28017591; https://doi.org/10.1016/j.molcel.2016.11.021
  • Chan FL, Wong LH. Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res 2012; 40:11178-88; PMID:23066104; https://doi.org/10.1093/nar/gks921
  • Quenet D, Dalal Y. A long non-coding RNA is required for targeting centromeric protein A to the human centromere. Elife 2014; 3:e03254; PMID:25117489; https://doi.org/10.7554/eLife.03254
  • Rosic S, Kohler F, Erhardt S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 2014; 207:335-49; PMID:25365994; https://doi.org/10.1083/jcb.201404097
  • Catania S, Pidoux AL, Allshire RC. Sequence features and transcriptional stalling within centromere DNA promote establishment of CENP-A chromatin. PLoS Genet 2015; 11:e1004986; PMID:25738810; https://doi.org/10.1371/journal.pgen.1004986
  • Grenfell AW, Heald R, Strzelecka M. Mitotic noncoding RNA processing promotes kinetochore and spindle assembly in Xenopus. J Cell Biol 2016; 214:133-41; PMID:27402954; https://doi.org/10.1083/jcb.201604029
  • Blower MD. Centromeric Transcription Regulates Aurora-B Localization and Activation. Cell Rep 2016; 15:1624-33; PMID:27184843; https://doi.org/10.1016/j.celrep.2016.04.054
  • Nechemia-Arbely Y, Fachinetti D, Miga KH, Sekulic N, Soni GV, Kim DH, Wong AK, Lee AY, Nguyen K, Dekker C, et al. Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points. J Cell Biol 2017; 216:607-21; PMID:28235947; https://doi.org/10.1083/jcb.201608083
  • Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park SY, et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 2011; 476:232-5; PMID:21743476; https://doi.org/10.1038/nature10258
  • Bailey AO, Panchenko T, Shabanowitz J, Lehman SM, Bai DL, Hunt DF, Black BE, Foltz DR. Identification of the posttranslational modifications present in centromeric chromatin. Mol Cell Proteomics 2015; 15(3):918-31
  • Fachinetti D, Logsdon GA, Abdullah A, Selzer EB, Cleveland DW, Black BE. CENP-A modifications on Ser68 and Lys124 are dispensable for establishment, maintenance, and long-term function of human centromeres. Dev Cell 2017; 40:104-13; PMID:28073008; https://doi.org/10.1016/j.devcel.2016.12.014
  • Niikura Y, Kitagawa R, Kitagawa K. CENP-A Ubiquitylation Is Required for CENP-A Deposition at the Centromere. Dev Cell 2017; 40:7-8; PMID:28073011; https://doi.org/10.1016/j.devcel.2016.12.020
  • Ohzeki J, Shono N, Otake K, Martins NM, Kugou K, Kimura H, Nagase T, Larionov V, Earnshaw WC, Masumoto H. KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation. Dev Cell 2016; 37:413-27; PMID:27270040; https://doi.org/10.1016/j.devcel.2016.05.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.