1,341
Views
8
CrossRef citations to date
0
Altmetric
Extra View

Contractility, differential tension and membrane removal lead zebrafish epiboly biomechanics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1328-1335 | Received 06 Mar 2017, Accepted 02 May 2017, Published online: 29 Jun 2017

References

  • Young PE, Pesacreta TC, Kiehart DP. Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis. Development 1991; 111:1-14; PMID:1901784
  • Bertet C, Lecuit T. Planar polarity and short-range polarization in Drosophila embryos. Semin Cell Dev Biol 2009; 20:1006-13; PMID:19486946; https://doi.org/10.1016/j.semcdb.2009.05.004
  • Solnica-Krezel L, Driever W. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 1994; 120:2443-55; PMID:7956824
  • Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F, Roensch J, Grill SW, Heisenberg CP. Forces driving epithelial spreading in zebrafish gastrulation. Science 2012; 338:257-60; PMID:23066079; https://doi.org/10.1126/science.1224143
  • Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 2003; 13:1365-77; PMID:12932320; https://doi.org/10.1016/S0960-9822(03)00576-1
  • Hiramatsu R, Matsuoka T, Kimura-Yoshida C, Han SW, Mochida K, Adachi T, Takayama S, Matsuo I. External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos. Dev Cell 2013; 27:131-44; PMID:24176640; https://doi.org/10.1016/j.devcel.2013.09.026
  • Fernandez-Gonzalez R, Simoes Sde M, Roper JC, Eaton S, Zallen JA. Myosin II dynamics are regulated by tension in intercalating cells. Dev Cell 2009; 17:736-43; PMID:19879198; https://doi.org/10.1016/j.devcel.2009.09.003
  • Pouille PA, Ahmadi P, Brunet AC, Farge E. Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci Signal 2009; 2:ra16; PMID:19366994; https://doi.org/10.1126/scisignal.2000098
  • Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountree RB, et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell 2009; 16:734-43; PMID:19460349; https://doi.org/10.1016/j.devcel.2009.04.013
  • Trinkaus JP. Mechanism of Fundulus epiboly—a current view. Am Zool 1984; 24:673-88; https://doi.org/10.1093/icb/24.3.673
  • Hernandez-Vega A, Marsal M, Pouille PA, Tosi S, Colombelli J, Luque T, Navajas D, Pagonabarraga I, Martín-Blanco E. Polarized cortical tension drives zebrafish epiboly movements. EMBO J 2017; 36:25-41; PMID:27834222; https://doi.org/10.15252/embj.201694264
  • Kageyama T. Cellular basis of epiboly of the enveloping layer in the embryo of the medaka, Oryzias latipes. II. Evidence for cell rearrangement. J Exp Zool 1982; 219:241-56; https://doi.org/10.1002/jez.1402190213
  • Kageyama T. Cellular basis of epiboly of the enveloping layer in the embryo of medaka, Oryzias latipes. I. Cell architecture revealed by silver staining method. Dev Growth Differentiation 1980; 22:659-68; https://doi.org/10.1111/j.1440-169X.1980.00659.x
  • Betchaku T, Trinkaus JP. Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of fundulus before and during epiboly. J Exp Zool 1978; 206:381-426; PMID:568653; https://doi.org/10.1002/jez.1402060310
  • Kessel R. The role of cell division in gastrulation of <i>Fundulus heteroclitus. Exp Cell Res 1960; 20:277-82; PMID:14408672; https://doi.org/10.1016/0014-4827(60)90157-9
  • Keller RE, Trinkaus JP. Rearrangement of enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly. Dev Biol 1987; 120:12-24; PMID:3817284; https://doi.org/10.1016/0012-1606(87)90099-6
  • Kimmel CB, Warga RM, Schilling TF. Origin and organization of the zebrafish fate map. Development 1990; 108:581-94; PMID:2387237
  • Kane DA, Warga RM, Kimmel CB. Mitotic domains in the early embryo of the zebrafish. Nature 1992; 360:735-7; PMID:1465143; https://doi.org/10.1038/360735a0
  • Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg CP. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat Cell Biol 2013; 15(12):1405-14; PMID:24212092; https://doi.org/10.1038/ncb2869
  • Köppen M, Fernández BG, Carvalho L, Jacinto A, Heisenberg CP. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 2006; 133:2671-81; PMID:16794032; https://doi.org/10.1242/dev.02439
  • Rohde LA, Heisenberg CP. Zebrafish gastrulation: cell movements, signals, and mechanisms. Int Rev Cytol 2007; 261:159-92; PMID:17560282
  • Cheng JC, Miller AL, Webb SE. Organization and function of microfilaments during late epiboly in zebrafish embryos. Dev Dyn 2004; 231:313-23; PMID:15366008; https://doi.org/10.1002/dvdy.20144
  • Trinkaus JP. A study of the mechanism of epiboly in the egg of Fundulus heteroclitus. J Exp Zool Part A Ecological Genet Physiol 1951; 118:269-319; https://doi.org/10.1002/jez.1401180204
  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 1995; 203:253-310; PMID:8589427; https://doi.org/10.1002/aja.1002030302
  • Lepage SE, Bruce AE. Zebrafish epiboly: mechanics and mechanisms. Int J Dev Biol 2010; 54:1213-28; PMID:20712002; https://doi.org/10.1387/ijdb.093028sl
  • Bensch R, Song S, Ronneberger O, Driever W. Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly. Biol Open 2013; 2:845-54; PMID:23951411; https://doi.org/10.1242/bio.20134614
  • Warga RM, Kimmel CB. Cell movements during epiboly and gastrulation in zebrafish. Development 1990; 108:569-80; PMID:2387236
  • Lepage SE, Tada M, Bruce AE. Zebrafish Dynamin is required for maintenance of enveloping layer integrity and the progression of epiboly. Dev Biol 2014; 385:52-66; PMID:24161849; https://doi.org/10.1016/j.ydbio.2013.10.015
  • Marsal M, Hernandez-Vega A, Pouille PA, Martin-Blanco E. Rab5-mediated Yolk Cell Endocytosis modulates Zebrafish Epiboly Biomechanics and Tissue Movements. bioRxiv 2017; [Epub ahead of print]; https://doi.org/10.1101/097212
  • Pei W, Noushmehr H, Costa J, Ouspenskaia MV, Elkahloun AG, Feldman B. An early requirement for maternal FoxH1 during zebrafish gastrulation. Dev Biol 2007; 310(1):10-22; https://doi.org/10.1016/j.ydbio.2007.07.011
  • Ahn HJ, Park Y, Kim S, Park HC, Seo SK, Yeo SY, Geum D. The expression profile and function of Satb2 in zebrafish embryonic development. Mol Cells 2010; 30:377-82; PMID:20814748; https://doi.org/10.1007/s10059-010-0128-6
  • Sheetz MP, Dai J. Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 1996; 6:85-9; PMID:15157483; https://doi.org/10.1016/0962-8924(96)80993-7
  • Dai J, Ting-Beall HP, Sheetz MP. The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J Gen Physiol 1997; 110:1-10; PMID:9234166; https://doi.org/10.1085/jgp.110.1.1
  • Lee JY, Harland RM. Endocytosis is required for efficient apical constriction during Xenopus gastrulation. Curr Biol 2010; 20:253-8; PMID:20096583; https://doi.org/10.1016/j.cub.2009.12.021
  • Fabrowski P, Necakov AS, Mumbauer S, Loeser E, Reversi A, Streichan S, Briggs JA, De Renzis S. Tubular endocytosis drives remodelling of the apical surface during epithelial morphogenesis in Drosophila. Nat Commun 2013; 4:2244; PMID:23921440; https://doi.org/10.1038/ncomms3244
  • Dai J, Sheetz MP, Wan X, Morris CE. Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 1998; 18:6681-92; PMID:9712640
  • Mateus AM, Gorfinkiel N, Schamberg S, Martinez Arias A. Endocytic and recycling endosomes modulate cell shape changes and tissue behaviour during morphogenesis in Drosophila. PloS One 2011; 6:e18729; PMID:21533196; https://doi.org/10.1371/journal.pone.0018729
  • Weliky M, Oster G. The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. Development 1990; 109:373-86; PMID:2401201
  • Cooper MS, Szeto DP, Sommers-Herivel G, Topczewski J, Solnica-Krezel L, Kang HC, Johnson I, Kimelman D. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP. Dev Dyn 2005; 232:359-68; PMID:15614774; https://doi.org/10.1002/dvdy.20252
  • Westerfield M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). (Eugene, OR: University of Oregon Press, 2000)
  • Armstrong PB, Child JS. Stages in the normal development of Fundulus heteroclitus. Biol Bull 1965; 128:143-68; https://doi.org/10.2307/1539545

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.