2,791
Views
12
CrossRef citations to date
0
Altmetric
Report

An analysis of gene expression data involving examination of signaling pathways activation reveals new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia

ORCID Icon, , , , , , ORCID Icon, , , & show all
Pages 1578-1584 | Received 03 Apr 2017, Accepted 02 May 2017, Published online: 16 Aug 2017

References

  • Sawaya ME, Price VH. Different levels of 5alpha-reductase type I and II, aromatase, and androgen receptor in hair follicles of women and men with androgenetic alopecia. J Invest Dermatol 1997; 109:296-300; PMID:9284093; https://doi.org/10.1111/1523-1747.ep12335779
  • Dawber RP. The embryology and development of human scalp hair. Clin Dermatol 1988; 6:1-6; PMID:3063365; https://doi.org/10.1016/0738-081X(88)90059-4
  • Courtois M, Loussouarn G, Hourseau C, Grollier JF. Hair cycle and alopecia. Skin Pharmacol 1994; 7:84-9; PMID:8003330; https://doi.org/10.1159/000211279
  • Guarrera M, Rebora A. Anagen hairs may fail to replace telogen hairs in early androgenic female alopecia. Dermatology 1996; 192:28-31; PMID:8832948; https://doi.org/10.1159/000246309
  • Ellis JA, Sinclair R, Harrap SB. Androgenetic alopecia: Pathogenesis and potential for therapy. Expert Rev Mol Med 2002; 4:1-11; PMID:14585162; https://doi.org/10.1017/S1462399402005112
  • Oliver RF, Jahoda CAB. The dermal papilla and maintenance of hair growth. In: Rogers GE, Reis PJ, Ward KA, Marshall RC, editors. The Biology of Wool and Hair. Netherlands: Springer; 1988; page 51-67
  • Obana NJ, Uno H. Dermal papilla cells in macaque alopecia trigger a testosterone-dependent inhibition of follicular cell proliferation. Hair research in the next millennium Amsterdam: Elsevier; 1996; 307-10
  • Randall VA. The use of dermal papilla cells in studies of normal and abnormal hair follicle biology. Dermatol Clin 1996; 14:585-94; PMID:9238318; https://doi.org/10.1016/S0733-8635(05)70386-7
  • Sinclair R, Torkamani N, Jones L. Androgenetic alopecia: New insights into the pathogenesis and mechanism of hair loss. F1000Res 2015; 4:585; PMID:26339482; https://doi.org/10.12688/f1000research.6401.1
  • Jaworsky C, Kligman AM, Murphy GF. Characterization of inflammatory infiltrates in male pattern alopecia: Implications for pathogenesis. Br J Dermatol 1992; 127:239-46; PMID:1390168; https://doi.org/10.1111/j.1365-2133.1992.tb00121.x
  • Sueki H, Stoudemayer T, Kligman AM, Murphy GF. Quantitative and ultrastructural analysis of inflammatory infiltrates in male pattern alopecia. Acta Derm Venereol 1999; 79:347-50; PMID:10494708; https://doi.org/10.1080/000155599750010238
  • Vogt A, Pfannes EKB, Fimmel S, Hadam S, Andruck A, Kottner J, Blume-Peytavi U. Infundibular protein and RNA-microarray analyses from affected and clinically non-affected scalp in male androgenetic alopecia patients. Exp Dermatol [Internet] 2017; 26(6):518-521; PMID:28266729; https://doi.org/10.1111/exd.13326
  • Wester RC, Maibach HI, Guy RH, Novak E. Minoxidil stimulates cutaneous blood flow in human balding scalps: Pharmacodynamics measured by laser Doppler velocimetry and photopulse plethysmography. J Invest Dermatol 1984; 82:515-7; PMID:6239893; https://doi.org/10.1111/1523-1747.ep12261084
  • Uno H, Cappas A, Brigham P. Action of topical minoxidil in the bald stump-tailed macaque. J Am Acad Dermatol 1987; 16:657-68; PMID:3558911; https://doi.org/10.1016/S0190-9622(87)70084-X
  • Sakita S, Kagoura M, Toyoda M, Morohashi M. The induction by topical minoxidil of increased fenestration in the perifollicular capillary wall. Br J Dermatol 1999; 140:294-6; PMID:10233226; https://doi.org/10.1046/j.1365-2133.1999.02666.x
  • Shorter K, Farjo NP, Picksley SM, Randall VA. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J 2008; 22:1725-36; PMID:18258787; https://doi.org/10.1096/fj.07-099424
  • Borisov NM, Terekhanova NV, Aliper AM, Venkova LS, Smirnov PY, Roumiantsev S, Korzinkin MB, Zhavoronkov AA, Buzdin AA. Signaling pathways activation profiles make better markers of cancer than expression of individual genes. Oncotarget 2014; 5:10198-205; PMID:25415353; https://doi.org/10.18632/oncotarget.2548
  • Lezhnina K, Kovalchuk O, Zhavoronkov AA, Korzinkin MB, Zabolotneva AA, Shegay PV, Sokov DG, Gaifullin NM, Rusakov IG, Aliper AM, et al. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways. Oncotarget 2014; 5:9022-32; PMID:25296972; https://doi.org/10.18632/oncotarget.2493
  • Makarev E, Cantor C, Zhavoronkov A, Buzdin A, Aliper A, Csoka AB. Pathway activation profiling reveals new insights into age-related macular degeneration and provides avenues for therapeutic interventions. Aging 2014; 6:1064-75; PMID:25543336; https://doi.org/10.18632/aging.100711
  • Zhu Q, Izumchenko E, Aliper AM, Makarev E, Paz K, Buzdin AA, Zhavoronkov AA, Sidransky D. Pathway activation strength is a novel independent prognostic biomarker for cetuximab sensitivity in colorectal cancer patients. Hum Genome Var 2015; 2:15009; PMID:27081524; https://doi.org/10.1038/hgv.2015.9
  • Aliper AM, Csoka AB, Buzdin A, Jetka T, Roumiantsev S, Moskalev A, Zhavoronkov A. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells. Aging 2015; 7:26-37; PMID:25587796; https://doi.org/10.18632/aging.100717
  • Shepelin D, Korzinkin M, Vanyushina A, Aliper A, Borisov N, Vasilov R, Zhukov N, Sokov D, Prassolov V, Gaifullin N, et al. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget 2016; 7:656-70; PMID:26624979; https://doi.org/10.18632/oncotarget.6394
  • Zhavoronkov A, Kanherkar RR, Izumchenko E, Teka M, Cantor C, Manaye K, Sidransky D, West MD, Makarev E, Csoka AB. Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma. Cell Cycle 2016; 15:1643-52; PMID:27229292; https://doi.org/10.1080/15384101.2016.1170261
  • Karnik P, Shah S, Dvorkin-Wininger Y, Oshtory S, Mirmirani P. Microarray analysis of androgenetic and senescent alopecia: Comparison of gene expression shows two distinct profiles. J Dermatol Sci 2013; 72:183-6; PMID:23886704; https://doi.org/10.1016/j.jdermsci.2013.06.017
  • Mirmirani P, Consolo M, Oyetakin-White P, Baron E, Leahy P, Karnik P. Similar response patterns to topical minoxidil foam 5% in frontal and vertex scalp of men with androgenetic alopecia: A microarray analysis. Br J Dermatol 2015; 172:1555-61; PMID:25204361; https://doi.org/10.1111/bjd.13399
  • Keyse SM, Emslie EA. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 1992; 359:644-7; PMID:1406996; https://doi.org/10.1038/359644a0
  • Charles CH, Sun H, Lau LF, Tonks NK. The growth factor-inducible immediate-early gene 3CH134 encodes a protein-tyrosine-phosphatase. Proc Natl Acad Sci U S A 1993; 90:5292-6; PMID:8389479; https://doi.org/10.1073/pnas.90.11.5292
  • Chin L-H, Hsu S-P, Zhong W-B, Liang YC. Involvement of cysteine-rich protein 61 in the epidermal growth factor-induced migration of human anaplastic thyroid cancer cells. Mol Carcinog 2016; 55:622-32; PMID:25773758; https://doi.org/10.1002/mc.22308
  • Gregoriou S, Papafragkaki D, Kontochristopoulos G, Rallis E, Kalogeromitros D, Rigopoulos D. Cytokines and other mediators in alopecia areata. Mediators Inflamm 2010; 2010:928030; PMID:20300578; https://doi.org/10.1155/2010/928030
  • Han JH, Kwon OS, Chung JH, Cho KH, Eun HC, Kim KH. Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J Dermatol Sci 2004; 34:91-8; PMID:15033191; https://doi.org/10.1016/j.jdermsci.2004.01.002
  • Hibino T, Nishiyama T. Role of TGF-beta2 in the human hair cycle. J Dermatol Sci 2004; 35:9-18; PMID:15194142; https://doi.org/10.1016/j.jdermsci.2003.12.003
  • Harel S, Higgins CA, Cerise JE, Dai Z, Chen JC, Clynes R, Christiano AM. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv 2015; 1:e1500973; PMID:26601320; https://doi.org/10.1126/sciadv.1500973
  • Murayama K, Kimura T, Tarutani M, Tomooka M, Hayashi R, Okabe M, Nishida K, Itami S, Katayama I, Nakano T. Akt activation induces epidermal hyperplasia and proliferation of epidermal progenitors. Oncogene 2007; 26:4882-8; PMID:17297448; https://doi.org/10.1038/sj.onc.1210274
  • Kwon OS, Han JH, Yoo HG, Chung JH, Cho KH, Eun HC, Kim KH. Human hair growth enhancement in vitro by green tea epigallocatechin-3 gallate (EGCG). Phytomedicine 2007; 14:551-5; PMID:17092697; https://doi.org/10.1016/j.phymed.2006.09.009
  • Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20:3427-36; PMID:11432830; https://doi.org/10.1093/emboj/20.13.3427
  • Lin HY, Kao CH, Lin KMC, Kaartinen V, Yang LT. Notch signaling regulates late-stage epidermal differentiation and maintains postnatal hair cycle homeostasis. PLoS One 2011; 6:e15842; PMID:21267458; https://doi.org/10.1371/journal.pone.0015842
  • Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002; 2:643-53; PMID:12015971; https://doi.org/10.1016/S1534-5807(02)00167-3
  • Heilmann S, Kiefer AK, Fricker N, Drichel D, Hillmer AM, Herold C, Tung JY, Eriksson N, Redler S, Betz RC, et al. Androgenetic alopecia: Identification of four genetic risk loci and evidence for the contribution of WNT signaling to its etiology. J Invest Dermatol 2013; 133:1489-96; PMID:23358095; https://doi.org/10.1038/jid.2013.43
  • Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14:59-88; PMID:9891778; https://doi.org/10.1146/annurev.cellbio.14.1.59
  • Shimizu H, Morgan BA. Wnt signaling through the beta-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. J Invest Dermatol 2004; 122:239-45; PMID:15009701; https://doi.org/10.1046/j.0022-202X.2004.22224.x
  • Li Y-H, Zhang K, Ye J-X, Lian X-H, Yang T. Wnt10b promotes growth of hair follicles via a canonical Wnt signalling pathway. Clin Exp Dermatol 2011; 36:534-40; PMID:21392083; https://doi.org/10.1111/j.1365-2230.2011.04019.x
  • Kwack MH, Kang BM, Kim MK, Kim JC, Sung YK. Minoxidil activates β-catenin pathway in human dermal papilla cells: A possible explanation for its anagen prolongation effect. J Dermatol Sci 2011; 62:154-9; PMID:21524889; https://doi.org/10.1016/j.jdermsci.2011.01.013
  • Rishikaysh P, Dev K, Diaz D, Qureshi WMS, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci 2014; 15:1647-70; PMID:24451143; https://doi.org/10.3390/ijms15011647
  • Deng Z, Lei X, Zhang X, Zhang H, Liu S, Chen Q, Hu H, Wang X, Ning L, Cao Y, et al. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. J Mol Cell Biol 2015; 7:62-72; PMID:25609845; https://doi.org/10.1093/jmcb/mjv005
  • Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 2009; 5:279-89; PMID:19733540; https://doi.org/10.1016/j.stem.2009.06.017
  • McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA). Biostatistics 2010; 11:242-53; PMID:20097884; https://doi.org/10.1093/biostatistics/kxp059
  • McCall MN, Uppal K, Jaffee HA, Zilliox MJ, Irizarry RA. The Gene Expression Barcode: Leveraging public data repositories to begin cataloging the human and murine transcriptomes. Nucleic Acids Res 2011; 39:D1011-5; PMID:21177656; https://doi.org/10.1093/nar/gkq1259
  • McCall MN, Jaffee HA, Irizarry RA. fRMA ST: Frozen robust multiarray analysis for Affymetrix Exon and Gene ST arrays. Bioinformatics 2012; 28:3153-4; PMID:23044545; https://doi.org/10.1093/bioinformatics/bts588
  • Ozerov IV, Lezhnina KV, Izumchenko E, Artemov AV, Medintsev S, Vanhaelen Q, Aliper A, Vijg J, Osipov AN, Labat I, et al. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development. Nat Commun 2016; 7:13427; PMID:27848968; https://doi.org/10.1038/ncomms13427
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27-30; PMID:10592173; https://doi.org/10.1093/nar/28.1.27
  • Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, et al. The Reactome pathway knowledgebase. Nucleic Acids Res 2014; 42:D472-7; PMID:24243840; https://doi.org/10.1093/nar/gkt1102
  • Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: The pathway interaction database. Nucleic Acids Res 2009; 37:D674-9; PMID:18832364; https://doi.org/10.1093/nar/gkn653

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.