955
Views
5
CrossRef citations to date
0
Altmetric
Report

A link between very long chain fatty acid elongation and mating-specific yeast cell cycle arrest

ORCID Icon, , , ORCID Icon &
Pages 2192-2203 | Received 17 Mar 2017, Accepted 05 May 2017, Published online: 07 Sep 2017

References

  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9:112-24; PMID: 18216768; https://doi.org/10.1038/nrm2330
  • Hannun YA, Obeid LM. Many ceramides. J Biol Chem 2011; 286:27855-62; PMID: 21693702; https://doi.org/10.1074/jbc.R111.254359
  • Carroll B, Donaldson JC, Obeid L. Sphingolipids in the DNA damage response. Adv Biol Regul 2015; 58:38-52; PMID: 25434743; https://doi.org/10.1016/j.jbior.2014.11.001
  • Villasmil ML, Francisco J, Gallo-Ebert C, Donigan M, Liu HY, Brower M, Nickels JT Jr. Ceramide signals for initiation of yeast mating-specific cell cycle arrest. Cell Cycle 2016; 15:441-54; PMID: 26726837; https://doi.org/10.1080/15384101.2015.1127475
  • Jenkins GM, Hannun YA. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. J Biol Chem 2001; 276:8574-81; PMID: 11056159; https://doi.org/10.1074/jbc.M007425200
  • Chung N, Jenkins G, Hannun YA, Heitman J, Obeid LM. Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem 2000; 275:17229-32; PMID: 10764732; https://doi.org/10.1074/jbc.C000229200
  • Jenkins GM, Richards A, Wahl T, Mao C, Obeid L, Hannun Y. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem 1997; 272:32566-72; PMID: 9405471; https://doi.org/10.1074/jbc.272.51.32566
  • Dickson RC. Roles for sphingolipids in Saccharomyces cerevisiae. Adv Exp Med Biol 2010; 688:217-31; PMID: 20919657.
  • Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB, Lester RL. Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem 1997; 272:30196-200; PMID: 9374502; https://doi.org/10.1074/jbc.272.48.30196
  • Montefusco DJ, Matmati N, Hannun YA. The yeast sphingolipid signaling landscape. Chem Phys Lipids 2014; 177:26-40; PMID: 24220500; https://doi.org/10.1016/j.chemphyslip.2013.10.006
  • Han G, Gable K, Kohlwein SD, Beaudoin F, Napier JA, Dunn TM. The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J Biol Chem 2002; 277:35440-9; PMID: 12087109; https://doi.org/10.1074/jbc.M205620200
  • Oh CS, Toke DA, Mandala S, Martin CE. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 1997; 272:17376-84; PMID: 9211877; https://doi.org/10.1074/jbc.272.28.17376
  • Toke DA, Martin CE. Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J Biol Chem 1996; 271:18413-22; PMID: 8702485; https://doi.org/10.1074/jbc.271.31.18413
  • Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D, Dunn T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:109-25; PMID: 11113186; https://doi.org/10.1128/MCB.21.1.109-125.2001
  • Beaudoin F, Gable K, Sayanova O, Dunn T, Napier JA. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase. J Biol Chem 2002; 277:11481-8; PMID: 11792704; https://doi.org/10.1074/jbc.M111441200
  • Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2007; 1773:1311-40; PMID: 17604854; https://doi.org/10.1016/j.bbamcr.2007.05.003
  • Wang Y, Dohlman HG. Pheromone signaling mechanisms in yeast: A prototypical sex machine. Science 2004; 306:1508-9; PMID: 15567849; https://doi.org/10.1126/science.1104568
  • D'Hondt K, Heese-Peck A, Riezman H. Protein and lipid requirements for endocytosis. Annu Rev Genet 2000; 34:255-95; PMID: 11092829; https://doi.org/10.1146/annurev.genet.34.1.255
  • Munn AL, Heese-Peck A, Stevenson BJ, Pichler H, Riezman H. Specific sterols required for the internalization step of endocytosis in yeast. Mol Biol Cell 1999; 10:3943-57; PMID: 10564282; https://doi.org/10.1091/mbc.10.11.3943
  • Jin H, McCaffery JM, Grote E. Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. J Cell Biol 2008; 180:813-26; PMID: 18299351; https://doi.org/10.1083/jcb.200705076
  • Villasmil ML, Ansbach A, Nickels JT, Jr. The putative lipid transporter, Arv1, is required for activating pheromone-induced MAP kinase signaling in Saccharomyces cerevisiae. Genetics 2011; 187:455-65; PMID: 21098723; https://doi.org/10.1534/genetics.110.120725
  • Bagnat M, Simons K. Lipid rafts in protein sorting and cell polarity in budding yeast Saccharomyces cerevisiae. Biol Chem 2002; 383:1475-80; PMID: 12452424; https://doi.org/10.1515/BC.2002.169
  • Molk JN, Bloom K. Microtubule dynamics in the budding yeast mating pathway. J Cell Sci 2006; 119:3485-90; PMID: 16931596; https://doi.org/10.1242/jcs.03193
  • Jones EW. The synthesis and function of proteases in Saccharomyces: Genetic approaches. Annu Rev Genet 1984; 18:233-70; PMID: 6397123; https://doi.org/10.1146/annurev.ge.18.120184.001313
  • Pryciak PM, Huntress FA. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway. Genes Dev 1998; 12:2684-97; https://doi.org/10.1101/gad.12.17.2684
  • Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM. A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 2007; 128:519-31; PMID: 17289571; https://doi.org/10.1016/j.cell.2006.12.032
  • Gartner A, Nasmyth K, Ammerer G. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev 1992; 6:1280-92; https://doi.org/10.1101/gad.6.7.1280
  • Garrenton LS, Young SL, Thorner J. Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain. Genes Dev 2006; 20:1946-58.
  • Garrenton LS, Stefan CJ, McMurray MA, Emr SD, Thorner J. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc Natl Acad Sci U S A 2010; 107:11805-10; PMID: 20547860.
  • Lemmon MA, Ferguson KM, O'Brien R, Sigler PB, Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A 1995; 92:10472-6; PMID: 7479822.
  • Germann M. Christina Gallo,Tomithy Doanhue, Reza Shirzadi,Joseph Stukey,Silvia Lang,Christoph Ruckenstuhl, Simonetta Oliaro-Bosso,Virginia McDonough,Friederike Turnowsky,Gianni Baliiano, and Joseph T. Nickels, Jr. Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis. J Biol Chem 2005; 280:35904-13; PMID: 16120615.
  • David D, Sundarababu S, Gerst JE. Involvement of long chain fatty acid elongation in the trafficking of secretory vesicles in yeast. J Cell Biol 1998; 143:1167-82; PMID: 9832547.
  • Whiteway MS, Wu C, Leeuw T, Clark K, Fourest-Lieuvin A, Thomas DY, Leberer E. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p. Science 1995; 269:1572-5; PMID: 7667635.
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387:569-72; PMID: 9177342.
  • Bollinger CR, Teichgraber V, Gulbins E. Ceramide-enriched membrane domains. Biochim Biophys Acta 2005; 1746:284-94; PMID: 16226325.
  • Dohlman HG, Slessareva JE. Pheromone signaling pathways in yeast. Sci STKE 2006; 2006:cm6; PMID: 17148787.
  • Rapedius M, Soom M, Shumilina E, Schulze D, Schonherr R, Kirsch C, Lang F, Tucker SJ, Baukrowitz T. Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels. J Biol Chem 2005; 280:30760-7; PMID: 15980413; https://doi.org/10.1074/jbc.M503503200
  • Schulze D, Rapedius M, Krauter T, Baukrowitz T. Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism. J Physiol 2003; 552:357-67; PMID: 14561820; https://doi.org/10.1113/jphysiol.2003.047035
  • Ohno Y, Suto S, Yamanaka M, Mizutani Y, Mitsutake S, Igarashi Y, Sassa T, Kihara A. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci U S A 2010; 107:18439-44; PMID: 20937905; https://doi.org/10.1073/pnas.1005572107
  • Wang Q, Tikhonenko M, Bozack SN, Lydic TA, Yan L, Panchy NL, McSorley KM, Faber MS, Yan Y, Boulton ME, et al. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One 2014; 9:e95028; PMID: 24736612; https://doi.org/10.1371/journal.pone.0095028
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol 1983; 153:163-8.
  • Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM. A Mechanism for Cell-Cycle Regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 2007; 128:519-31; PMID: 17289571; https://doi.org/10.1016/j.cell.2006.12.032
  • Strickfaden SC, Pryciak PM. Distinct Roles for Two G{alpha} G Interfaces in cell polarity control by a yeast heterotrimeric G protein. Mol Biol Cell 2008; 19:181-97; PMID: 17978098; https://doi.org/10.1091/mbc.E07-04-0385
  • Brizzio V, Gammie AE, Nijbroek G, Michaelis S, Rose MD. Cell fusion during yeast mating requires high levels of a-factor mating pheromone. J Cell Biol 1996; 135:1727-39; PMID: 8991086; https://doi.org/10.1083/jcb.135.6.1727
  • Swain E, Stukey J, McDonough V, Germann M, Liu Y, Sturley S, Nickels JT. Yeast cells lacking the ARV1 gene harbor defects in sphingolipid metabolism. Complementation by human ARV1. J Biol Chem 2002; 277:36152-60; PMID: 12145310; https://doi.org/10.1074/jbc.M206624200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.