5,566
Views
45
CrossRef citations to date
0
Altmetric
Extra View

Chemo brain: From discerning mechanisms to lifting the brain fog—An aging connection

&
Pages 1345-1349 | Received 12 May 2017, Accepted 18 May 2017, Published online: 30 Jun 2017

References

  • Longe JL. Gale Encyclopedia of /cancer: A guide to Cancer and its Treatments, 3rd edtion Detroit, MI: Gale/Cengage Learning, 2013.
  • DeVita VT, Hellman S, Rosenberg SA. Cancer, principles & practice of oncology. Philadelphia, PA: Lippincott Williams & Wilkins, 2005.
  • Soffietti R, Trevisan E, Ruda R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb Clin Neurol 2014; 121:1199-218; PMID:24365412
  • Han R, Yang YM, Dietrich J, Luebke A, Mayer-Proschel M, Noble M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol 2008; 7:12; PMID:18430259; https://doi.org/10.1186/jbiol69
  • Seigers R, Fardell JE. Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci Biobehav Rev 2011; 35:729-41; PMID:20869395; https://doi.org/10.1016/j.neubiorev.2010.09.006
  • Seigers R, Loos M, Van Tellingen O, Boogerd W, Smit AB, Schagen SB. Cognitive impact of cytotoxic agents in mice. Psychopharmacology 2015; 232:17-37; PMID:24894481; https://doi.org/10.1007/s00213-014-3636-9
  • Seigers R, Pourtau L, Schagen SB, van Dam FS, Koolhaas JM, Konsman JP, Buwalda B. Inhibition of hippocampal cell proliferation by methotrexate in rats is not potentiated by the presence of a tumor. Brain Res Bull 2010; 81:472-6; PMID:19828128; https://doi.org/10.1016/j.brainresbull.2009.10.006
  • Seigers R, Schagen SB, Beerling W, Boogerd W, van Tellingen O, van Dam FS, Koolhaas JM, Buwalda B. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res 2008; 186:168-75; PMID:17854921; https://doi.org/10.1016/j.bbr.2007.08.004
  • Seigers R, Schagen SB, Coppens CM, van der Most PJ, van Dam FS, Koolhaas JM, Buwalda B. Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behav Brain Res 2009; 201:279-84; PMID:19428645; https://doi.org/10.1016/j.bbr.2009.02.025
  • Seigers R, Schagen SB, Van Tellingen O, Dietrich J. Chemotherapy-related cognitive dysfunction: current animal studies and future directions. Brain imaging and behavior 2013; 7:453-9; PMID:23949877; https://doi.org/10.1007/s11682-013-9250-3
  • Seigers R, Timmermans J, van der Horn HJ, de Vries EF, Dierckx RA, Visser L, Schagen SB, van Dam FS, Koolhaas JM, Buwalda B. Methotrexate reduces hippocampal blood vessel density and activates microglia in rats but does not elevate central cytokine release. Behav Brain Res 2010; 207:265-72; PMID:19840821; https://doi.org/10.1016/j.bbr.2009.10.009
  • Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 2012; 18:1954-65; PMID:22338017; https://doi.org/10.1158/1078-0432.CCR-11-2000
  • Mitchell T, Turton P. ‘Chemobrain’: concentration and memory effects in people receiving chemotherapy - a descriptive phenomenological study. Eur J Cancer Care 2011; 20:539-48; PMID:21443746; https://doi.org/10.1111/j.1365-2354.2011.01244.x
  • Ahles TA, Saykin AJ, Furstenberg CT, Cole B, Mott LA, Skalla K, Whedon MB, Bivens S, Mitchell T, Greenberg ER, et al. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol 2002; 20:485-93; PMID:11786578; https://doi.org/10.1200/JCO.2002.20.2.485
  • Ahles TA, Saykin AJ, Furstenberg CT, Cole B, Mott LA, Titus-Ernstoff L, Skalla K, Bakitas M, Silberfarb PM. Quality of life of long-term survivors of breast cancer and lymphoma treated with standard-dose chemotherapy or local therapy. J Clin Oncol 2005; 23:4399-405; PMID:15994149; https://doi.org/10.1200/JCO.2005.03.343
  • Ahles TA, Silberfarb PM, Herndon J, 2nd, Maurer LH, Kornblith AB, Aisner J, Perry MC, Eaton WL, Zacharski LL, Green MR, et al. Psychologic and neuropsychologic functioning of patients with limited small-cell lung cancer treated with chemotherapy and radiation therapy with or without warfarin: a study by the Cancer and Leukemia Group B. J Clin Oncol 1998; 16:1954-60; PMID:9586915; https://doi.org/10.1200/JCO.1998.16.5.1954
  • Vardy J, Wefel JS, Ahles T, Tannock IF, Schagen SB. Cancer and cancer-therapy related cognitive dysfunction: an international perspective from the Venice cognitive workshop. Ann Oncol 2008; 19:623-9; https://doi.org/10.1093/annonc/mdm500
  • Wefel JS, Schagen SB. Chemotherapy-related cognitive dysfunction. Curr Neurol Neurosci Rep 2012; 12:267-75; PMID:22453825; https://doi.org/10.1007/s11910-012-0264-9
  • O'Farrell E, MacKenzie J, Collins B. Clearing the air: a review of our current understanding of “chemo fog.” Curr Oncol Rep 2013; 15:260-9; PMID:23483375; https://doi.org/10.1007/s11912-013-0307-7
  • Castellon S, Ganz PA. Neuropsychological studies in breast cancer: in search of chemobrain. Breast Cancer Res and Treat 2009; 116:125-7; PMID:18923899; https://doi.org/10.1007/s10549-008-0211-2
  • Olson K, Hewit J, Slater LG, Chambers T, Hicks D, Farmer A, Grattan K, Steggles S, Kolb B. Assessing cognitive function in adults during or following chemotherapy: a scoping review. Support Care Cancer 2016; 24:3223-34; PMID:27067592
  • Kaiser J, Bledowski C, Dietrich J. Neural correlates of chemotherapy-related cognitive impairment. Cortex 2014; 54:33-50; PMID:24632463; https://doi.org/10.1016/j.cortex.2014.01.010
  • Mustafa S, Walker A, Bennett G, Wigmore PM. 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 2008; 28:323-30; PMID:18702703; https://doi.org/10.1111/j.1460-9568.2008.06325.x
  • Briones TL, Woods J. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neurosci 2011; 12:124; PMID:22152030; https://doi.org/10.1186/1471-2202-12-124
  • Wang XM, Walitt B, Saligan L, Tiwari AF, Cheung CW, Zhang ZJ. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine 2015; 72:86-96; PMID:25573802; https://doi.org/10.1016/j.cyto.2014.12.006
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33:245-54; PMID:12610534; https://doi.org/10.1038/ng1089
  • Kovalchuk O. Epigenetic effects of ionizing radiation. In: Jirtle RL, Tyson, F.L., ed. Environmental Epigenomics in Health and Disease: Epigenetics and Disease Origins: Springer Science & Business Media, 2013:99-126
  • Jirtle RL. Epigenetics: How genes and environment interact. In: Jirtle RL, Tyson, F.L., ed. Environmental Epigenomics in Health and Disease: Epigenetics and Disease Origins: Springer Science & Business Media, 2013:3-30
  • Qureshi IA, Mehler MF. An evolving view of epigenetic complexity in the brain. Philos Trans R Soc Lond B Biol Sci 2014; 369; pii: 20130506; PMID:25135967; https://doi.org/10.1098/rstb.2013.0506
  • Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol 2008; 86:305-41; PMID:18940229; https://doi.org/10.1016/j.pneurobio.2008.10.001
  • Kovalchuk A, Rodriguez-Juarez R, Ilnytskyy Y, Byeon B, Shpyleva S, Melnyk S, Pogribny I, Kolb B, Kovalchuk O. Sex-specific effects of cytotoxic chemotherapy agents cyclophosphamide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus - an aging connection. Aging (Albany NY) 2016; 8:697-711; PMID:27032448; https://doi.org/10.18632/aging.100920
  • Kolb B, Mychasiuk R, Muhammad A, Li Y, Frost DO, Gibb R. Experience and the developing prefrontal cortex. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17186-93; PMID:23045653; https://doi.org/10.1073/pnas.1121251109
  • Lara AH, Wallis JD. The Role of Prefrontal Cortex in Working Memory: A Mini Review. Front Syst Neurosci 2015; 9:173; PMID:26733825; https://doi.org/10.3389/fnsys.2015.00173
  • de Haan M, Mishkin M, Baldeweg T, Vargha-Khadem F. Human memory development and its dysfunction after early hippocampal injury. Trends Neurosci 2006; 19(R2):374-81; PMID:16750273; https://doi.org/10.1016/j.tins.2006.05.008
  • Kolb B, Whishaw IQ. An introduction to brain and behavior. New York, NY: Worth Publishers, 2014
  • Ponting CP, Belgard TG. Transcribed dark matter: meaning or myth? Hum Mol Genet 2010:ddq362; https://doi.org/10.1093/hmg/ddq362.
  • Stein LD. Human genome: end of the beginning. Nature 2004; 431:915-6; PMID:15496902; https://doi.org/10.1038/431915a
  • Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10:38-55; PMID:21489289; https://doi.org/10.1186/1476-4598-10-38
  • Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. EMBO Mol Med 2012; 4:143-59; https://doi.org/10.1002/emmm.201100209
  • Koturbash I, Zemp FJ, Pogribny I, Kovalchuk O. Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat Res 2011; 722:94-105; https://doi.org/10.1016/j.mrgentox.2010.05.006
  • Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006; 15:R17-R29; PMID:16651366; https://doi.org/10.1093/hmg/ddl046
  • Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DL, et al. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64; PMID:26072273; https://doi.org/10.1016/j.pneurobio.2015.05.002
  • Szafranski K, Abraham KJ, Mekhail K. Non-coding RNA in neural function, disease, and aging. Front Genet 2015; 6:87; PMID:25806046; https://doi.org/10.3389/fgene.2015.00087
  • Iyengar BR, Choudhary A, Sarangdhar MA, Venkatesh KV, Gadgil CJ, Pillai B. Non-coding RNA interact to regulate neuronal development and function. Front Cell Neurosci 2014; 8:47; PMID:24605084; https://doi.org/10.3389/fncel.2014.00047
  • Kovalchuk I, Kovalchuk O. Epigenetics in health and disease. Upper Saddle River, N.J.: FT Press, 2012
  • Koch MW, Metz LM, Kovalchuk O. Epigenetics and miRNAs in the diagnosis and treatment of multiple sclerosis. Trends Mol Med 2013; 19:23-30; PMID:23153574; https://doi.org/10.1016/j.molmed.2012.10.008
  • Baulina NM, Kulakova OG, Favorova OO. MicroRNAs: The Role in Autoimmune Inflammation. Acta Naturae 2016; 8:21-33; PMID:27099782
  • Liang J, Yang F, Zhao L, Bi C, Cai B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2016; 7(30):48813-31
  • Wen L, Tang F. Genomic distribution and possible functions of DNA hydroxymethylation in the brain. Genomics 2014; 104:341-6; PMID:25205307; https://doi.org/10.1016/j.ygeno.2014.08.020
  • Haberman RP, Quigley CK, Gallagher M. Characterization of CpG island DNA methylation of impairment-related genes in a rat model of cognitive aging. Epigenetics 2012; 7:1008-19; PMID:22869088; https://doi.org/10.4161/epi.21291
  • Xu X. DNA methylation and cognitive aging. Oncotarget 2015; 6:13922-32; PMID:26015403; https://doi.org/10.18632/oncotarget.4215
  • Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, Centeno TP, van Bebber F, Capece V, Garcia Vizcaino JC, et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 2016; 19:102-10; PMID:26656643
  • Weber M, Schubeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 2007; 19:273-80; PMID:17466503; https://doi.org/10.1016/j.ceb.2007.04.011
  • Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007; 39:457-66; PMID:17334365; https://doi.org/10.1038/ng1990
  • Wilson IM, Davies JJ, Weber M, Brown CJ, Alvarez CE, MacAulay C, Schubeler D, Lam WL. Epigenomics: mapping the methylome. Cell Cycle 2006; 5:155-8; PMID:16397413; https://doi.org/10.4161/cc.5.2.2367
  • Gupta S, El-Rayes BF. Small molecule tyrosine kinase inhibitors in pancreatic cancer. Biologics: targets & therapy 2008; 2:707-15
  • Borisov NM, Terekhanova NV, Aliper AM, Venkova LS, Smirnov PY, Roumiantsev S, Korzinkin MB, Zhavoronkov AA, Buzdin AA. Signaling pathway activation profiles make better markers of cancer than expression of individual genes. Oncotarget 2014; https://doi.org/10.18632/oncotarget.2548
  • Buzdin AA, Zhavoronkov AA, Korzinkin MB, Venkova LS, Zenin AA, Smirnov PY, Borisov NM. Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data. Front Genet 2014; 5:55; PMID:24723936; https://doi.org/10.3389/fgene.2014.00055
  • Lezhnina K, Kovalchuk O, Zhavoronkov AA, Korzinkin MB, Zabolotneva AA, Shegay PV, Sokov DG, Gaifullin NM, Rusakov IG, Aliper AM, et al. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways. Oncotarget 2014; 5:9022-32; PMID:25296972; https://doi.org/10.18632/oncotarget.2493
  • Jellen LC, Aliper A, Buzdin A, Zhavoronkov A. Screening and personalizing nootropic drugs and cognitive modulator regimens in silico. Front Syst Neurosci 2015; 9:4; PMID:25705179; https://doi.org/10.3389/fnsys.2015.00004
  • Artcibasova AV, Korzinkin MB, Sorokin MI, Shegay PV, Zhavoronkov AA, Gaifullin N, Alekseev BY, Vorobyev NV, Kuzmin DV, Kaprin capital A C, et al. MiRImpact, a new bioinformatic method using complete microRNA expression profiles to assess their overall influence on the activity of intracellular molecular pathways. Cell Cycle 2016; 15:689-98; PMID:27027999; https://doi.org/10.1080/15384101.2016.1147633
  • Wardill HR, Mander KA, Van Sebille YZ, Gibson RJ, Logan RM, Bowen JM, Sonis ST. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer 2016; 139:2635-45; PMID:27367824; https://doi.org/10.1002/ijc.30252
  • Moskalev A, Anisimov V, Aliper A, Artemov A, Asadullah K, Belsky D, Baranova A, de Grey A, Dixit VD, Debonneuil E, et al. A review of the biomedical innovations for healthy longevity. Aging (Albany NY) 2017; 9:7-25; PMID:28132958; https://doi.org/10.18632/aging.101163
  • Aliper A, Belikov AV, Garazha A, Jellen L, Artemov A, Suntsova M, Ivanova A, Venkova L, Borisov N, Buzdin A, et al. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY) 2016; 8:2127-52; PMID:27677171; https://doi.org/10.18632/aging.101047
  • Follin C, Erfurth EM, Johansson A, Latt J, Sundgren PC, Osterberg K, Spulber G, Mannfolk P, Bjorkman-Burtscher IM. Impaired brain metabolism and neurocognitive function in childhood leukemia survivors despite complete hormone supplementation in adulthood. Psychoneuroendocrinology 2016; 73:157-65; PMID:27498291; https://doi.org/10.1016/j.psyneuen.2016.07.222
  • Hearps S, Seal M, Anderson V, McCarthy M, Connellan M, Downie P, De Luca C. The relationship between cognitive and neuroimaging outcomes in children treated for acute lymphoblastic leukemia with chemotherapy only: A systematic review. Pediatr Blood Cancer 2016; 64(2):225-233; PMID:27696698
  • Kunin-Batson A, Kadan-Lottick N, Neglia JP. The contribution of neurocognitive functioning to quality of life after childhood acute lymphoblastic leukemia. Psychooncology 2014; 23:692-9; PMID:24497266; https://doi.org/10.1002/pon.3470
  • Moskalev A, Chernyagina E, de Magalhaes JP, Barardo D, Thoppil H, Shaposhnikov M, Budovsky A, Fraifeld VE, Garazha A, Tsvetkov V, et al. Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging (Albany NY) 2015; 7:616-28; PMID:26342919; https://doi.org/10.18632/aging.100799

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.