1,120
Views
11
CrossRef citations to date
0
Altmetric
Report

Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F

, ORCID Icon, ORCID Icon, , , ORCID Icon & show all
Pages 1414-1429 | Received 09 Nov 2016, Accepted 26 May 2017, Published online: 21 Jul 2017

References

  • Yang ZY, Guo J, Li N, Qian M, Wang SN, Zhu XL. Mitosin/CENP-F is a conserved kinetochore protein subjected to cytoplasmic dynein-mediated poleward transport. Cell Res 2003; 13:275-83; PMID:12974617; https://doi.org/10.1038/sj.cr.7290172
  • Liang Y, Yu W, Li Y, Yu L, Zhang Q, Wang F, Yang Z, Du J, Huang Q, Yao X, et al. Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase. Mol Biol Cell 2007; 18:2656-66; PMID:17494871; https://doi.org/10.1091/mbc.E06-04-0345
  • Zuccolo M, Alves A, Galy V, Bolhy S, Formstecher E, Racine V, Sibarita JB, Fukagawa T, Shiekhattar R, Yen T, et al. The human Nup107/160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J 2007; 26:1853-64; PMID:17363900; https://doi.org/10.1038/sj.emboj.7601642
  • Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Biol 2011; 192:855-71; PMID:21383080; https://doi.org/10.1083/jcb.201007118
  • Hu DJ, Baffet AD, Nayak T, Akhmanova A, Doye V, Vallee RB. Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. Cell 2013; 154:1300-13; PMID:24034252; https://doi.org/10.1016/j.cell.2013.08.024
  • Kanfer G, Courtheoux T, Peterka M, Meier S, Soste M, Melnik A, Reis K, Aspenstrom P, Peter M, Picotti P, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Comm 2015; 6:8015; https://doi.org/10.1038/ncomms9015
  • Zhu X, Mancini MA, Chang KH, Liu CY, Chen CF, Shan B, Jones D, Yang-Feng TL, Lee WH. Characterization of a novel 350-kgdalton nuclear phosphoprotein that is specifically involved in mitotic-phase progression. Mol Cell Biol 1995; 15:5017-29; PMID:7651420; https://doi.org/10.1128/MCB.15.9.5017
  • Vergnolle MS, Taylor SS. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/Dynein microtubule motor complexes. Curr Biol 2007; 17:1173-9; PMID:17600710; https://doi.org/10.1016/j.cub.2007.05.077
  • Rattner JB, Rao A, Fritzler MJ, Valencia DW, Yen TJ. CENP-F is a ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell Motil Cytoskeleton 1993; 26:214-26; PMID:7904902; https://doi.org/10.1002/cm.970260305
  • Zhu X, Chang K-H, He D, Mancini MA, Brinkley WR, Lee WH. The C terminus of mitosin is essential for its nuclear localization, centromere/kinetochore targeting, and dimerization. J Biol Chem 1995; 270:19545-50; PMID:7642639; https://doi.org/10.1074/jbc.270.33.19545
  • Baffet A D, Hu D J, Vallee R B. Cdk1 activates pre-mitotic nuclear envelope dynein recruitment and apical nuclear migration in neural stem cells. Dev Cell 2015; 33:703-16; PMID:26051540; https://doi.org/10.1016/j.devcel.2015.04.022
  • Cianfrocco MA, DeSantis ME, Leschziner AE, Reck-Peterson SL. Mechanism and regulation of cytoplasmic dynein. Annu Rev Cell Dev Biol 2015; 31:83-108; PMID:26436706; https://doi.org/10.1146/annurev-cellbio-100814-125438
  • Splinter D, Razafsky DS, Schlager MA, Serra-Marques A, Grigoriev I, Demmers J, Keijzer N, Jiang K, Poser I, Hyman AA, et al. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol Biol Cell 2012; 23:4226-41; PMID:22956769; https://doi.org/10.1091/mbc.E12-03-0210
  • Schlager MA, Serra-Marques A, Grigoriev I, Gumy LF, Esteves da Silva M, Wulf PS, Akhmanova A, Hoogenraad CC. Bicaudal D family adaptor proteins control the velocity of dynein-based movements. Cell Rep 2014; 8:1248-56; PMID:25176647; https://doi.org/10.1016/j.celrep.2014.07.052
  • McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 2014; 345:337-41; PMID:25035494; https://doi.org/10.1126/science.1254198
  • Chan GKT, Schaar BT, Yen TJ. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 1998; 143:49-63; PMID:9763420; https://doi.org/10.1083/jcb.143.1.49
  • Yang Z, Guo J, Chen Q, Ding C, Du J, Zhu X. Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Mol Cell Biol 2005; 25:4062-74; PMID:15870278; https://doi.org/10.1128/MCB.25.10.4062-4074.2005
  • Musinipally V, Howes S, Alushin GM, Nogales E. The microtubule binding properties of CENP-E' s C-terminus and CENP-F. J Mol Biol 2013; 425:4427-41; PMID:23892111; https://doi.org/10.1016/j.jmb.2013.07.027
  • Morris-Rosendahl DJ, Kaindl AM. What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol Cell Probes 2015; 29:271-81; PMID:26050940; https://doi.org/10.1016/j.mcp.2015.05.015
  • Waters AM, Asfahani R, Carroll P, Bicknell L, Lescai F, Bright A, Chanudet E, Brooks A, Christou-Savina S, Osman G, et al. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J Med Genetic 2015; 52:147-56; https://doi.org/10.1136/jmedgenet-2014-102691
  • O'Brien SL, Fagan A, Fox EJP, Millikan RC, Culhane AC, Brennan DJ, McCann AH, Hegarty S, Moyna S, Duffy MJ, et al. CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. Int J Cancer 2007; 120:1434-43; PMID:17205517; https://doi.org/10.1002/ijc.22413
  • Cao JY, Liu L, Chen SP, Zhang X, Mi YJ, Liu ZG, Li MZ, Zhang H, Qian CN, Shao JY, et al. Prognostic significance and therapeutic implications of centromere protein F expression in human nasopharyngeal carcinoma. Mol Cancer 2010; 9:237; PMID:20828406; https://doi.org/10.1186/1476-4598-9-237
  • Habberstad AH, Gulati S, Torp SH. Evaluation of the proliferation markers Ki-67/MIB-1, mitosin, survivin, pHH3, and DNA topoisomerase II alpha in human anaplastic astrocytomas - an immunohistochemical study. Diag Pathol 2011; 6:43; https://doi.org/10.1186/1746-1596-6-43
  • Welner S, Trier NH, Frisch M, Locht H, Hansen PR, Houen G. Correlation between centromere protein-F autoantibodies and cancer analyzed by enzyme-linked immunosorbent assay. Mol Cancer 2013; 12:95; PMID:23978088; https://doi.org/10.1186/1476-4598-12-95
  • Ueda S, Kondoh N, Tsuda H, Yamamoto S, Asakawa H, Fukatsu K, Kobayashi T, Yamamoto J, Tamura K, Ishida J, et al. Expression of centromere protein F (CENP-F) associated with higher FDG uptake on PET/CT, detected by cDNA microarray, predicts high-risk patients with primary breast cancer. BMC Cancer 2008; 8:384; PMID:19102762; https://doi.org/10.1186/1471-2407-8-384
  • Schafer-Hales K, Iaconelli J, Snyder JP, Prussia A, Nettles JH, El-Naggar A, Khuri FR, Giannakakou P, Marcus AI. Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther 2007; 6:1317-28; PMID:17431110; https://doi.org/10.1158/1535-7163.MCT-06-0703
  • Brown HK, Ottewell PD, Coleman RE, Holen I. The kinetochore protein Cenp-F is a potential novel target for zoledronic acid in breast cancer cells. J Cell Mol Med 2009; 15:501-13; https://doi.org/10.1111/j.1582-4934.2009.00995.x
  • Christie M, Chang C-W, Rona G, Smith KM, Stewart AG, Takeda AAS, Fontes MRM, Stewart M, Vertessy BG, Forwood JK, et al. Structural biology and regulation of protein import into the nucleus. J Mol Biol 2016; 428:2060-90; PMID:26523678; https://doi.org/10.1016/j.jmb.2015.10.023
  • Conti E, Uy M, Leighton L, Blobel G, Kuriyan J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 1998; 94:193-204; PMID:9695948; https://doi.org/10.1016/S0092-8674(00)81419-1
  • Conti E, Kuriyan J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 2000; 8:329-38; PMID:10745017; https://doi.org/10.1016/S0969-2126(00)00107-6
  • Hodel AE, Harreman MT, Pulliam KF, Harben ME, Holmes JS, Hodel MR, Berland KM, Corbett AH. Nuclear localization signal receptor affinity correlates with in vivo localization in Saccharomyces cerevisiae. J Biol Chem 2006; 281:23545-56; PMID:16785238; https://doi.org/10.1074/jbc.M601718200
  • Harreman MT, Kline TM, Milford HG, Harben MB, Hodel AE, Corbett AH. Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals. J Biol Chem 2004; 279:20613-21; PMID:14998990; https://doi.org/10.1074/jbc.M401720200
  • Stade K, Ford C, Guthrie C, Weis K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 1997; 90:1041-50; PMID:9323132; https://doi.org/10.1016/S0092-8674(00)80370-0
  • Fornerod M, Ohno M, Yoshida M, Mattaj I. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90:1051-60; PMID:9323133; https://doi.org/10.1016/S0092-8674(00)80371-2
  • Ossareh-Nazari B, Bachelerie F, Dargemont C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 1997; 278:141-4; PMID:9311922; https://doi.org/10.1126/science.278.5335.141
  • Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, Nishida E. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390:308-11; PMID:9384386; https://doi.org/10.1038/36894
  • Dong X, Biswas A, Suel KE, Jackson LK, Martinez R, Gu H, Chook YM. Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 2009; 458:1136-41; PMID:19339969; https://doi.org/10.1038/nature07975
  • Xu D, Marquis K, Pei J, Fu S-C, Cagatay T, Grishin NV, Chook YM. LocNES: a computational tool for locating classical NESs in CRM1 cargo proteins. Bioinformatics 2015; 31:1357-65; PMID:25515756; https://doi.org/10.1093/bioinformatics/btu826
  • Monecke T, Güttler T, Neumann P, Dickmanns A, Görlich D, Ficner R. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 2009; 324:1087-91; PMID:19389996; https://doi.org/10.1126/science.1173388
  • Kirli K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Gorlich D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife 2015; 4:e11466; PMID:26673895; https://doi.org/10.7554/eLife.11466
  • Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signal 2010; 3:ra3; https://doi.org/10.1126/scisignal.2000475
  • Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, et al. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 2010; 8:e1000350; PMID:20386726; https://doi.org/10.1371/journal.pbio.1000350
  • Lee HO, Norden C. Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia. Trends Cell Biol 2013; 23:141-50; PMID:23266143; https://doi.org/10.1016/j.tcb.2012.11.001
  • Serio G, Margaria V, Jensen S, Oldani A, Bartek J, Bussolino F, Lanzetti L. Small GTPase Rab5 participates in chromosome congression and regulates localization of the centromere-associated protein CENP-F to kinetochores. Proc Natl Acad Sci U S A 2011; 108:17337-42; PMID:21987812; https://doi.org/10.1073/pnas.1103516108
  • Gurden MDJ, Holland AJ, van Zon W, Tighe A, Vergnolle MA, Andres DA, Spielmann HP, Malumbres M, Wolthuis RMF, Cleveland DW, et al. Cdc20 is required for the post-anaphase, KEN-dependent degradation of centromere protein F. J Cell Sci 2010; 123:321-30; PMID:20053638; https://doi.org/10.1242/jcs.062075
  • Rona G, Marfori M, Borsos M, Scheer I, Takacs E, Toth J, Babos F, Magyar A, Erdei A, Bozoky Z, et al. Phosphorylation adjacent to the nuclear localization signal of human dUTPase abolishes nuclear import: structural and mechanistic insights. Acta Cryst D 2013; 69:2495-505; https://doi.org/10.1107/S0907444913023354
  • Rona G, Borsos M, Ellis JJ, Mehdi AM, Christie M, Kornyei Z, Neubrandt M, Toth J, Bozoky Z, Buday L, et al. Dynamics of re-constitution of the human nuclear proteome after cell division is regulated by NLS-adjacent phosphorylation. Cell Cycle 2014; 13:3551-64; PMID:25483092; https://doi.org/10.4161/15384101.2014.960740
  • Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, et al. Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics 2012; 11:1070-83; PMID:22798277; https://doi.org/10.1074/mcp.M111.012625
  • Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO. Targets of the cyclin-dependent kinase Cdk1. Nature 2003; 425:859-64; PMID:14574415; https://doi.org/10.1038/nature02062
  • Kirby TW, Gassman NR, Smith CE, Pedersen LC, Gabel SA, Sobhany M, Wilson SH, London RE. Nuclear localization of the DNA repair scaffold XRCC1: uncovering the functional role of a bipartite NLS. Sci Rep 2015; 5:13405; PMID:26304019; https://doi.org/10.1038/srep13405
  • Fulcher AJ, Roth DM, Fatima S, Alvisi G, Jans DA. The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal. FASEB J 2010; 24:1454-66; PMID:20040518; https://doi.org/10.1096/fj.09-136564
  • Ma L, Zhao X, Zhu X. Mitosin/CENP-F in mitosis, transcriptional control, and differentiation. J Biomed Sci 2006; 13:205-13; PMID:16456711; https://doi.org/10.1007/s11373-005-9057-3
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth 2012; 9:671-5; https://doi.org/10.1038/nmeth.2089
  • Kosugi S, Hasebe M, Tomita M, Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 2009; 106:10171-6; PMID:19520826; https://doi.org/10.1073/pnas.0900604106
  • Lupas A, Van Dyke M, and Stock J. Predicting coiled coils from protein sequences. Science 1991; 252:1162-4; PMID:2031185; https://doi.org/10.1126/science.252.5009.1162
  • Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Hönigschmid P, Schafferhans A, Roos M, Bernhofer M, et al. PredictProtein - an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 2014; 42:W337-43; PMID:24799431; https://doi.org/10.1093/nar/gku366
  • Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Cryst D 2010; D66:486-501; https://doi.org/10.1107/S0907444910007493
  • Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372:774-97; PMID:17681537; https://doi.org/10.1016/j.jmb.2007.05.022
  • Gallivan JP, Dougherty DA. Cation-pi interactions in structural biology. Proc Natl Acad of Sci U S A 1999; 96:9459-64; https://doi.org/10.1073/pnas.96.17.9459
  • Fontes MRM, Teh T, Jans D, Brinkworth RI, Kobe B. Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. J Biol Chem 2003; 278:27981-7; PMID:12695505; https://doi.org/10.1074/jbc.M303275200
  • Fontes MRM, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 2000; 297:1183-94; PMID:10764582; https://doi.org/10.1006/jmbi.2000.3642
  • Roman N, Christie M, Swarbrick CMD, Kobe B, Forwood JK. Structural characterisation of the nuclear import receptor importin alpha in complex with the bipartite NLS of Prp20. PLoS One 2013; 8:e82038; PMID:24339986; https://doi.org/10.1371/journal.pone.0082038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.