1,497
Views
12
CrossRef citations to date
0
Altmetric
Review

GRWD1, a new player among oncogenesis-related ribosomal/nucleolar proteins

, , & ORCID Icon
Pages 1397-1403 | Received 26 Apr 2017, Accepted 31 May 2017, Published online: 21 Jul 2017

References

  • Bursac S, Brdovcak MC, Donati G, Volarevic S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta 2014; 1842:817-30; PMID:24514102; https://doi.org/10.1016/j.bbadis.2013.08.014
  • Armistead J, Triggs-Raine B. Diverse diseases from a ubiquitous process: The ribosomopathy paradox. FEBS Lett 2014; 588:1491-500; PMID:24657617; https://doi.org/10.1016/j.febslet.2014.03.024
  • Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, Itoh B, Wang J, Komatsu Y, Yang YR, et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011; 17:944-51; PMID:21804542; https://doi.org/10.1038/nm.2392
  • Kayama K, Watanabe S, Takafuji T, Tsuji T, Hironaka K, Matsumoto M, Nakayama KI, Enari M, Kohno T, Shiraishi K, et al. GRWD1 negatively regulates p53 via the RPL11-MDM2 pathway and promotes tumorigenesis. EMBO Rep 2017; 18:123-37; PMID:27856536; https://doi.org/10.15252/embr.201642444
  • Vousden KH, Prives C. Blinded by the light: The growing complexity of p53. Cell 2009; 137:413-31; PMID:19410540; https://doi.org/10.1016/j.cell.2009.04.037
  • Zilfou JT, Lowe SW. Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 2009; 1:a001883; PMID:20066118; https://doi.org/10.1101/cshperspect.a001883
  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112:779-91; PMID:12654245; https://doi.org/10.1016/S0092-8674(03)00193-4
  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429:86-92; PMID:15103385; https://doi.org/10.1038/nature02514
  • Yamasaki S, Yagishita N, Sasaki T, Nakazawa M, Kato Y, Yamadera T, Bae E, Toriyama S, Ikeda R, Zhang L, et al. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘synoviolin’. EMBO J 2007; 26:113-22; PMID:17170702; https://doi.org/10.1038/sj.emboj.7601490
  • Zhang Y, Lu H. Signaling to p53: Ribosomal proteins find their way. Cancer Cell 2009; 16:369-77; PMID:19878869; https://doi.org/10.1016/j.ccr.2009.09.024
  • Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 279:44475-82; PMID:15308643; https://doi.org/10.1074/jbc.M403722200
  • Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 2004; 24:7654-68; PMID:15314173; https://doi.org/10.1128/MCB.24.17.7654-7668.2004
  • Jin A, Itahana K, O'Keefe K, Zhang Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 2004; 24:7669-80; PMID:15314174; https://doi.org/10.1128/MCB.24.17.7669-7680.2004
  • Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 2008; 32:180-9; PMID:18951086; https://doi.org/10.1016/j.molcel.2008.08.031
  • Yadavilli S, Mayo LD, Higgins M, Lain S, Hegde V, Deutsch WA. Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair (Amst) 2009; 8:1215-24; PMID:19656744; https://doi.org/10.1016/j.dnarep.2009.07.003
  • Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003; 23:8902-12; PMID:14612427; https://doi.org/10.1128/MCB.23.23.8902-8912.2003
  • Zhou X, Hao Q, Liao J, Zhang Q, Lu H. Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 2013; 32:388-96; PMID:22391559; https://doi.org/10.1038/onc.2012.63
  • Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X, Prives C. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 2009; 35:316-26; PMID:19683495; https://doi.org/10.1016/j.molcel.2009.07.014
  • Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451:335-9; PMID:18202658; https://doi.org/10.1038/nature06494
  • Farrar JE, Dahl N. Untangling the phenotypic heterogeneity of diamond blackfan anemia. Semin Hematol 2011; 48:124-35; PMID:21435509; https://doi.org/10.1053/j.seminhematol.2011.02.003
  • Gazda HT, Preti M, Sheen MR, O'Donohue MF, Vlachos A, Davies SM, Kattamis A, Doherty L, Landowski M, Buros C, et al. Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in diamond-blackfan anemia. Hum Mutat 2012; 33:1037-44; PMID:22431104; https://doi.org/10.1002/humu.22081
  • Horos R, Ijspeert H, Pospisilova D, Sendtner R, Andrieu-Soler C, Taskesen E, Nieradka A, Cmejla R, Sendtner M, Touw IP, et al. Ribosomal deficiencies in diamond-blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 2012; 119:262-72; PMID:22058113; https://doi.org/10.1182/blood-2011-06-358200
  • Boria I, Garelli E, Gazda HT, Aspesi A, Quarello P, Pavesi E, Ferrante D, Meerpohl JJ, Kartal M, Da Costa L, et al. The ribosomal basis of diamond-blackfan anemia: Mutation and database update. Hum Mutat 2010; 31:1269-79; PMID:20960466; https://doi.org/10.1002/humu.21383
  • Deisenroth C, Zhang Y. Ribosome biogenesis surveillance: Probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 2010; 29:4253-60; PMID:20498634; https://doi.org/10.1038/onc.2010.189
  • Zhou X, Liao JM, Liao WJ, Lu H. Scission of the p53-MDM2 loop by ribosomal proteins. Genes Cancer 2012; 3:298-310; PMID:23150763; https://doi.org/10.1177/1947601912455200
  • Bursac S, Brdovcak MC, Pfannkuchen M, Orsolic I, Golomb L, Zhu Y, Katz C, Daftuar L, Grabusic K, Vukelic I, et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc Natl Acad Sci U S A 2012; 109:20467-72; PMID:23169665; https://doi.org/10.1073/pnas.1218535109
  • Daftuar L, Zhu Y, Jacq X, Prives C. Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One 2013; 8:e68667; PMID:23874713; https://doi.org/10.1371/journal.pone.0068667
  • Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3:577-87; PMID:12842086; https://doi.org/10.1016/S1535-6108(03)00134-X
  • Fumagalli S, Ivanenkov VV, Teng T, Thomas G. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev 2012; 26:1028-40; PMID:22588717; https://doi.org/10.1101/gad.189951.112
  • Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS, Zhang Y. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction. Cancer Cell 2010; 18:231-43; PMID:20832751; https://doi.org/10.1016/j.ccr.2010.08.007
  • Nishimura K, Kumazawa T, Kuroda T, Katagiri N, Tsuchiya M, Goto N, Furumai R, Murayama A, Yanagisawa J, Kimura K. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Cell Rep 2015; 10:1310-23; PMID:25732822; https://doi.org/10.1016/j.celrep.2015.01.055
  • Morgado-Palacin L, Varetti G, Llanos S, Gomez-Lopez G, Martinez D, Serrano M. Partial loss of Rpl11 in adult mice recapitulates diamond-blackfan anemia and promotes lymphomagenesis. Cell Rep 2015; 13:712-22; PMID:26489471; https://doi.org/10.1016/j.celrep.2015.09.038
  • Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005; 123:49-63; PMID:16213212; https://doi.org/10.1016/j.cell.2005.07.034
  • Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz T, Wiest DL. Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 2007; 26:759-72; PMID:17555992; https://doi.org/10.1016/j.immuni.2007.04.012
  • Rao S, Lee SY, Gutierrez A, Perrigoue J, Thapa RJ, Tu Z, Jeffers JR, Rhodes M, Anderson S, Oravecz T, et al. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood 2012; 120:3764-73; PMID:22976955; https://doi.org/10.1182/blood-2012-03-415349
  • Rashkovan M, Vadnais C, Ross J, Gigoux M, Suh WK, Gu W, Kosan C, Moroy T. Miz-1 regulates translation of Trp53 via ribosomal protein L22 in cells undergoing V(D)J recombination. Proc Natl Acad Sci U S A 2014; 111:E5411-5419; PMID:25468973; https://doi.org/10.1073/pnas.1412107111
  • Dobbelstein M, Shenk T. In vitro selection of RNA ligands for the ribosomal L22 protein associated with epstein-barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries. J Virol 1995; 69:8027-34; PMID:7494316
  • Solanki NR, Stadanlick JE, Zhang Y, Duc AC, Lee SY, Lauritsen JP, Zhang Z, Wiest DL. Rpl22 loss selectively impairs alphabeta T cell development by dysregulating endoplasmic reticulum stress signaling. J Immunol 2016; 197:2280-9; PMID:27489283; https://doi.org/10.4049/jimmunol.1600815
  • Ruggero D, Shimamura A. Marrow failure: A window into ribosome biology. Blood 2014; 124:2784-92; PMID:25237201; https://doi.org/10.1182/blood-2014-04-526301
  • Watkins-Chow DE, Cooke J, Pidsley R, Edwards A, Slotkin R, Leeds KE, Mullen R, Baxter LL, Campbell TG, Salzer MC, et al. Mutation of the diamond-blackfan anemia gene Rps7 in mouse results in morphological and neuroanatomical phenotypes. PLoS Genet 2013; 9:e1003094; PMID:23382688; https://doi.org/10.1371/journal.pgen.1003094
  • Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H, et al. The gene encoding ribosomal protein S19 is mutated in diamond-blackfan anaemia. Nat Genet 1999; 21:169-75; PMID:9988267; https://doi.org/10.1038/5951
  • Willig TN, Draptchinskaia N, Dianzani I, Ball S, Niemeyer C, Ramenghi U, Orfali K, Gustavsson P, Garelli E, Brusco A, et al. Mutations in ribosomal protein S19 gene and diamond blackfan anemia: Wide variations in phenotypic expression. Blood 1999; 94:4294-306; PMID:10590074
  • Jaako P, Flygare J, Olsson K, Quere R, Ehinger M, Henson A, Ellis S, Schambach A, Baum C, Richter J, et al. Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with diamond-blackfan anemia. Blood 2011; 118:6087-96; PMID:21989989; https://doi.org/10.1182/blood-2011-08-371963
  • Matsson H, Davey EJ, Draptchinskaia N, Hamaguchi I, Ooka A, Leveen P, Forsberg E, Karlsson S, Dahl N. Targeted disruption of the ribosomal protein S19 gene is lethal prior to implantation. Mol Cell Biol 2004; 24:4032-7; PMID:15082795; https://doi.org/10.1128/MCB.24.9.4032-4037.2004
  • Narla A, Ebert BL. Ribosomopathies: Human disorders of ribosome dysfunction. Blood 2010; 115:3196-205; PMID:20194897; https://doi.org/10.1182/blood-2009-10-178129
  • Barlow JL, Drynan LF, Trim NL, Erber WN, Warren AJ, McKenzie AN. New insights into 5q- syndrome as a ribosomopathy. Cell Cycle 2010; 9:4286-93; PMID:20980806; https://doi.org/10.4161/cc.9.21.13742
  • Boultwood J. The role of haploinsufficiency of RPS14 and p53 activation in the molecular pathogenesis of the 5q- syndrome. Pediatr Rep 2011; 3 Suppl 2:e10; PMID:22053272; https://doi.org/10.4081/pr.2011.s2.e10
  • Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L, Della Porta MG, Jadersten M, Killick S, Fidler C, et al. Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol 2007; 139:578-89; PMID:17916100; https://doi.org/10.1111/j.1365-2141.2007.06833.x
  • Wu L, Li X, Xu F, Zhang Z, Chang C, He Q. Low RPS14 expression in MDS without 5q - aberration confers higher apoptosis rate of nucleated erythrocytes and predicts prolonged survival and possible response to lenalidomide in lower risk non-5q- patients. Eur J Haematol 2013; 90:486-93; PMID:23506134; https://doi.org/10.1111/ejh.12105
  • Schneider RK, Schenone M, Ferreira MV, Kramann R, Joyce CE, Hartigan C, Beier F, Brummendorf TH, Germing U, Platzbecker U, et al. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat Med 2016; 22:288-97; PMID:26878232; https://doi.org/10.1038/nm.4047
  • Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL, Jolin HE, Pannell R, Middleton AJ, Wong SH, et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 2010; 16:59-66; PMID:19966810; https://doi.org/10.1038/nm.2063
  • Yim JH, Kim YJ, Ko JH, Cho YE, Kim SM, Kim JY, Lee S, Park JH. The putative tumor suppressor gene GLTSCR2 induces PTEN-modulated cell death. Cell Death Differ 2007; 14:1872-9; PMID:17657248; https://doi.org/10.1038/sj.cdd.4402204
  • Merritt MA, Parsons PG, Newton TR, Martyn AC, Webb PM, Green AC, Papadimos DJ, Boyle GM. Expression profiling identifies genes involved in neoplastic transformation of serous ovarian cancer. BMC Cancer 2009; 9:378, 2407-9-378; PMID:19849863; https://doi.org/10.1186/1471-2407-9-378
  • Kim YJ, Cho YE, Kim YW, Kim JY, Lee S, Park JH. Suppression of putative tumour suppressor gene GLTSCR2 expression in human glioblastomas. J Pathol 2008; 216:218-24; PMID:18729076; https://doi.org/10.1002/path.2401
  • Uchi R, Kogo R, Kawahara K, Sudo T, Yokobori T, Eguchi H, Sugimachi K, Maehama T, Mori M, Suzuki A, et al. PICT1 regulates TP53 via RPL11 and is involved in gastric cancer progression. Br J Cancer 2013; 109:2199-206; PMID:24045667; https://doi.org/10.1038/bjc.2013.561
  • Ishibashi M, Kogo R, Shibata K, Ueo H, Uchi R, Matsumura T, Takano Y, Sawada G, Takahashi Y, Mima K, et al. Clinical significance of PICT1 in patients of hepatocellular carcinoma with wild-type TP53. Ann Surg Oncol 2013; 20 Suppl 3:S537-544; PMID:23532381; https://doi.org/10.1245/s10434-013-2958-x
  • Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G, Hosek SM, Kimmel D, O'Fallon J, Yates A, et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 1999; 18:4144-52; PMID:10435596; https://doi.org/10.1038/sj.onc.1202759
  • Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90:1473-9; PMID:9776413
  • Mariani L, Deiana G, Vassella E, Fathi AR, Murtin C, Arnold M, Vajtai I, Weis J, Siegenthaler P, Schobesberger M, et al. Loss of heterozygosity 1p36 and 19q13 is a prognostic factor for overall survival in patients with diffuse WHO grade 2 gliomas treated without chemotherapy. J Clin Oncol 2006; 24:4758-63; PMID:16966689; https://doi.org/10.1200/JCO.2006.05.9238
  • Okamura K, Takayama K, Kawahara K, Harada T, Nishio M, Otsubo K, Ijichi K, Kohno M, Iwama E, Fujii A, et al. PICT1 expression is a poor prognostic factor in non-small cell lung cancer. Oncoscience 2014; 1:375-82; PMID:25594032; https://doi.org/10.18632/oncoscience.43
  • Suzuki A, Kogo R, Kawahara K, Sasaki M, Nishio M, Maehama T, Sasaki T, Mimori K, Mori M. A new PICTure of nucleolar stress. Cancer Sci 2012; 103:632-7; PMID:22320853; https://doi.org/10.1111/j.1349-7006.2012.02219.x
  • Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep 2013; 5:237-47; PMID:24120868; https://doi.org/10.1016/j.celrep.2013.08.049
  • Maehama T, Kawahara K, Nishio M, Suzuki A, Hanada K. Nucleolar stress induces ubiquitination-independent proteasomal degradation of PICT1 protein. J Biol Chem 2014; 289:20802-12; PMID:24923447; https://doi.org/10.1074/jbc.M114.571893
  • Chen H, Han L, Tsai H, Wang Z, Wu Y, Duo Y, Cao W, Chen L, Tan Z, Xu N, et al. PICT-1 is a key nucleolar sensor in DNA damage response signaling that regulates apoptosis through the RPL11-MDM2-p53 pathway. Oncotarget 2016; 7:83241-57; PMID:27829214; https://doi.org/10.18632/oncotarget.13082
  • Gratenstein K, Heggestad AD, Fortun J, Notterpek L, Pestov DG, Fletcher BS. The WD-repeat protein GRWD1: Potential roles in myeloid differentiation and ribosome biogenesis. Genomics 2005; 85:762-73; PMID:15885502; https://doi.org/10.1016/j.ygeno.2005.02.010
  • Iouk TL, Aitchison JD, Maguire S, Wozniak RW. Rrb1p, a yeast nuclear WD-repeat protein involved in the regulation of ribosome biosynthesis. Mol Cell Biol 2001; 21:1260-71; https://doi.org/10.1128/MCB.21.4.1260-1271.2001
  • Schaper S, Fromont-Racine M, Linder P, de la Cruz J, Namane A, Yaniv M. A yeast homolog of chromatin assembly factor 1 is involved in early ribosome assembly. Curr Biol 2001; 11:1885-90; https://doi.org/10.1016/s0960-9822(01)00584-x
  • Sugimoto N, Kitabayashi I, Osano S, Tatsumi Y, Yugawa T, Narisawa-Saito M, Matsukage A, Kiyono T, Fujita M. Identification of novel human Cdt1-binding proteins by a proteomics approach: Proteolytic regulation by APC/CCdh1. Mol Biol Cell 2008; 19:1007-21; PMID:18162579; https://doi.org/10.1091/mbc.E07-09-0859
  • Sugimoto N, Maehara K, Yoshida K, Yasukouchi S, Osano S, Watanabe S, Aizawa M, Yugawa T, Kiyono T, Kurumizaka H, et al. Cdt1-binding protein GRWD1 is a novel histone-binding protein that facilitates MCM loading through its influence on chromatin architecture. Nucleic Acids Res 2015; 43:5898-911; PMID:25990725; https://doi.org/10.1093/nar/gkv509
  • Higa M, Fujita M, Yoshida K. DNA replication origins and fork progression at mammalian telomeres. Genes (Basel) 2017; 8:112; PMID:28350373; https://doi.org/10.3390/genes8040112.
  • Aizawa M, Sugimoto N, Watanabe S, Yoshida K, Fujita M. Nucleosome assembly and disassembly activity of GRWD1, a novel Cdt1-binding protein that promotes pre-replication complex formation. Biochim Biophys Acta 2016; 1863:2739-48; PMID:27552915; https://doi.org/10.1016/j.bbamcr.2016.08.008
  • He YJ, McCall CM, Hu J, Zeng Y, Xiong Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 2006; 20:2949-54; https://doi.org/10.1101/gad.1483206
  • Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 2006; 8:1277-83; https://doi.org/10.1038/ncb1490
  • Idol RA, Robledo S, Du HY, Crimmins DL, Wilson DB, Ladenson JH, Bessler M, Mason PJ. Cells depleted for RPS19, a protein associated with diamond blackfan anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 2007; 39:35-43; PMID:17376718; https://doi.org/10.1016/j.bcmd.2007.02.001
  • Choesmel V, Bacqueville D, Rouquette J, Noaillac-Depeyre J, Fribourg S, Cretien A, Leblanc T, Tchernia G, Da Costa L, Gleizes PE. Impaired ribosome biogenesis in diamond-blackfan anemia. Blood 2007; 109:1275-83; PMID:17053056; https://doi.org/10.1182/blood-2006-07-038372
  • De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, Gianfelici V, Geerdens E, Clappier E, Porcu M, et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 2013; 45:186-90; PMID:23263491; https://doi.org/10.1038/ng.2508

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.